terclim by ICS banner
IVES 9 IVES Conference Series 9 INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

Abstract

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2]. Aim of this work was to explore if and how the presence of the sulfonated PA can influence the wine PA profile and mDP, at different storage parameters. The sample set used included 5 single cultivar wines, four levels of SO₂ and two storage conditions, while all wines were analyzed by phloroglucinolysis reaction – UPLC-MS/MS recently published [3]. The results showed that after the phloroglucinolysis reaction the epicatechin sulfonate increased more than 30 times. The formation of the phloroglucinol adducts after the reaction is highly influenced for the storage conditions, and therebefore the mDP. The wines stored in cellar temperatures has the double of the concentrations of phloroglucinol adducts in comparison to the wines stored in room temperature. The inclusion of epicatechin sulfonate in the determination of mDP leads to lower values in all studied wines, highlighting the relevance of the sulfonated proanthocyanidins in the determination of this relevant parameter.

 

1. Mattivi, F. et al., 2015. DOI: 10.1021/bk-2015-1203.ch003
2. Arapitsas, P. et al.,2018. https://doi.org/10.1038/s41598-018-19185-5
3. Arapitsas, P. et al., 2021. https://doi.org/10.3390/molecules26041087

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Daniele Perenzoni¹, Lais Moro², Maurizio Ugliano³, Luca Rolle⁴, Paola Piombino⁵, Andrea Versari⁶, Matteo Marangon⁷, Fulvio Mattivi¹, Urska Vrhovsek¹, Panagiotis Arapitsas1,8

1. Unit of Metabolomics, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
2. São Paulo State University (Unesp), School of Agriculture, Av Universitária, n 3780, 18.610-034, Botucatu, SP, Brazil.
3. Department of Biotechnology, University of Verona, 37134 Verona, Italy
4. Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco, Italy
5. Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, 83100 Avelino, Italy
6. Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
7. Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Le-gnaro, Italy
8. Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Egaleo, 12243 Athens, Greece

Contact the author*

Keywords

phloroglucinolysis, SO₂, proanthocyanidin mean degree of polymerization (mDP)

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.

RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

Nowadays, the use of food preservatives is controversial, SO2 being no exception. Microbial communities have been particularly studied during the prefermentary and fermentation stages in a context of without added SO2. However, microbial risks associated with SO2 reduction or absence, particularly during the wine aging process, have so far been little studied. The microbiological control of wine aging is a key issue for winemakers wishing to produce wines without added SO2. The aim of the present study is to evaluate the impact of different wine aging strategies according to the addition or not of SO2 on the microbiological population levels and diversity.