terclim by ICS banner
IVES 9 IVES Conference Series 9 INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

Abstract

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2]. Aim of this work was to explore if and how the presence of the sulfonated PA can influence the wine PA profile and mDP, at different storage parameters. The sample set used included 5 single cultivar wines, four levels of SO₂ and two storage conditions, while all wines were analyzed by phloroglucinolysis reaction – UPLC-MS/MS recently published [3]. The results showed that after the phloroglucinolysis reaction the epicatechin sulfonate increased more than 30 times. The formation of the phloroglucinol adducts after the reaction is highly influenced for the storage conditions, and therebefore the mDP. The wines stored in cellar temperatures has the double of the concentrations of phloroglucinol adducts in comparison to the wines stored in room temperature. The inclusion of epicatechin sulfonate in the determination of mDP leads to lower values in all studied wines, highlighting the relevance of the sulfonated proanthocyanidins in the determination of this relevant parameter.

 

1. Mattivi, F. et al., 2015. DOI: 10.1021/bk-2015-1203.ch003
2. Arapitsas, P. et al.,2018. https://doi.org/10.1038/s41598-018-19185-5
3. Arapitsas, P. et al., 2021. https://doi.org/10.3390/molecules26041087

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Daniele Perenzoni¹, Lais Moro², Maurizio Ugliano³, Luca Rolle⁴, Paola Piombino⁵, Andrea Versari⁶, Matteo Marangon⁷, Fulvio Mattivi¹, Urska Vrhovsek¹, Panagiotis Arapitsas1,8

1. Unit of Metabolomics, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
2. São Paulo State University (Unesp), School of Agriculture, Av Universitária, n 3780, 18.610-034, Botucatu, SP, Brazil.
3. Department of Biotechnology, University of Verona, 37134 Verona, Italy
4. Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco, Italy
5. Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, 83100 Avelino, Italy
6. Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
7. Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Le-gnaro, Italy
8. Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Egaleo, 12243 Athens, Greece

Contact the author*

Keywords

phloroglucinolysis, SO₂, proanthocyanidin mean degree of polymerization (mDP)

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.