terclim by ICS banner
IVES 9 IVES Conference Series 9 INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

Abstract

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2]. Aim of this work was to explore if and how the presence of the sulfonated PA can influence the wine PA profile and mDP, at different storage parameters. The sample set used included 5 single cultivar wines, four levels of SO₂ and two storage conditions, while all wines were analyzed by phloroglucinolysis reaction – UPLC-MS/MS recently published [3]. The results showed that after the phloroglucinolysis reaction the epicatechin sulfonate increased more than 30 times. The formation of the phloroglucinol adducts after the reaction is highly influenced for the storage conditions, and therebefore the mDP. The wines stored in cellar temperatures has the double of the concentrations of phloroglucinol adducts in comparison to the wines stored in room temperature. The inclusion of epicatechin sulfonate in the determination of mDP leads to lower values in all studied wines, highlighting the relevance of the sulfonated proanthocyanidins in the determination of this relevant parameter.

 

1. Mattivi, F. et al., 2015. DOI: 10.1021/bk-2015-1203.ch003
2. Arapitsas, P. et al.,2018. https://doi.org/10.1038/s41598-018-19185-5
3. Arapitsas, P. et al., 2021. https://doi.org/10.3390/molecules26041087

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Daniele Perenzoni¹, Lais Moro², Maurizio Ugliano³, Luca Rolle⁴, Paola Piombino⁵, Andrea Versari⁶, Matteo Marangon⁷, Fulvio Mattivi¹, Urska Vrhovsek¹, Panagiotis Arapitsas1,8

1. Unit of Metabolomics, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
2. São Paulo State University (Unesp), School of Agriculture, Av Universitária, n 3780, 18.610-034, Botucatu, SP, Brazil.
3. Department of Biotechnology, University of Verona, 37134 Verona, Italy
4. Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco, Italy
5. Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, 83100 Avelino, Italy
6. Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
7. Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Le-gnaro, Italy
8. Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Egaleo, 12243 Athens, Greece

Contact the author*

Keywords

phloroglucinolysis, SO₂, proanthocyanidin mean degree of polymerization (mDP)

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

The wine market interest for autochthonous varieties, particularly from less known wine regions, has significantly raised in the past few years. In that context, Slovenia, a small country from central Europe with a long winemaking tradition, is getting more and more attention, particularly through its range of unique regional varieties. Among them, Zelen, meaning “green” in Slovene, can only be found in the Vipava valley region, located on the western side of the country, near the border with Italy. When they are young, Zelen wines display very singular aromas reminiscent of rosemary, sage and white fruit. Despite its uniqueness, Zelen wine aromatic typicality is poorly documented in the literature.

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.