terclim by ICS banner
IVES 9 IVES Conference Series 9 INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Abstract

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.

Three major compounds, 2-acetyl-1-pyrroline (APY), 2-acetyltetrahydropyridine (ATHP) and 2-ethyltetrahydropyridine (ETHP), have been identified as responsible for mousiness in wines. A particularity of these compounds is that they are prone to tautomerism and can coexist in several forms. Moreover, the nitrogen atom in the heterocyclic ring can be protonated under specific conditions, i.e. with pH lower than pKa, inducing a positive charge and, as a consequence, an increase of polarity and a loss of volatility of the molecule.

To date quantification data reported in the literature are limited due to analytical issues related to the nature of these compounds. To fill the gap and later understand the parameters influencing mousiness, the objective of this study was to develop a simple and effective method to simultaneously determine trace levels of these three mousy N-heterocycles in wines. Therefore, a stir bar sorptive extraction (SBSE) followed by GC-MS analysis was developed (1).

Firstly, both previously reported tautomers of ATHP (2), 2-acetyl-1,4,5,6-tetrahydropyridine and 2-acetyl-3,4,5,6-tetrahydropyridine were identified, unlike to APY and ETHP. The extraction conditions were then optimized paying particular attention to the pH of the sample. The performance of the developed method was evaluated on white, rosé and red wines and the limits of detection and quantification of the method are lower than previously published concentrations in spoiled wine.

The method was then applied to provide quantitative data by analyzing 6 control wines and 68 wines produced without added sulfites. ETHP was detected in almost all wines produced with limited use of SO₂. ATHP was detected in almost all wines suspected of mousiness whereas APY was only detected in few cases. This method will provide a support for further studies aimed at understanding the phenomena that influence the occurrence of mousy off-flavor and the oenological parameters that modulate its expression.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Céline Franc¹, Daiki Kiyomichi², Pierre Moulis1,3, Laurent Riquier¹, Patricia Ballestra¹, Stéphanie Marchand¹, Sophie Tempère1 and Gilles de Revel¹

1. Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, F-33140 Villenave d’Ornon, France
2. Institute for Future Beverages, Kirin Holdings Company, Limited, 4-9-1 Jonan, Fujisawa, Kanagawa 251-0057, Japan
3. Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany

Contact the author*

Keywords

mousiness, N-heterocycles, quantification, SBSE-GC-MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

ASSESSMENT OF ‘DOLCETTO’ GRAPES AND WINES FROM DIFFERENT AREAS OF OVADA DOCG

Dolcetto (Vitis vinifera L.) is one of the traditionally cultivated varieties in Piedmont (north-east Italy). Dolcetto wines have long been associated with local consumption and they are little known internationally. In particular, the Ovada area (south-east Piedmont), even if it represents a small share of the regional PDO Dolcetto production, is one of the oldest and vocated territory, giving wine also suitable for aging. In this study, the basic composition and phenolic content of Dolcetto grapes for Ovada DOCG wines have been investigated in three different vintages (2020-2022), as well as the main aspects of the derived commercial and experimental wines (basic parameters, phenolics, volatile compounds, sensory properties).

Beyond liking scores: the importance of the drinking experience to understand our consumers

The presentation will approach the understanding of wine consumers´ perception based on the experiential model suggested by Warell (2008). In this framework, wine consumption gives rise to a
variety of experiences related to the perception, understanding, and judgment of the product. These
multidimensional facets of the drinking experience can be explored by measuring affective, cognitive,
and sensory responses of consumers, which are shown to be stable regardless of the social context.

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.