terclim by ICS banner
IVES 9 IVES Conference Series 9 MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

Abstract

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet. Therefore, to enhance the champagne tasting experience, monitoring gas-phase CO₂ in the headspace of champagne glasses has become a topic of interest over the last dozen years [2-5].

Based on the Tunable Diode Laser Absorption Spectroscopy (TDLAS), a CO₂-Diode Laser Sensor (CO₂- DLS) with two distributed feedback (DFB) diode lasers emitting at 4986.0 and 3728.6 cm-1 was deve- loped to allow the fine monitoring of gas-phase CO₂ over a large concentration range from 0.5% to 100%. Moreover, to perform the simultaneous spatial mapping of CO₂ along a multipoint array in the headspace of champagne glasses, two couples of galvanometric mirrors were combined with a couple of parabolic mirrors symmetrically positioned on either side of the glass headspace [4,5]. Thereby, the CO₂-DLS shows a very high temporal resolution thus enabling an accurate monitoring and mapping of gas-phase CO₂ in the headspace of glasses.

Real-time monitoring of gas-phase CO₂ was thus performed with the CO₂-DLS, under static tasting conditions, in the headspace of several types of champagne glasses showing distinct shapes and volume capacities (including the 21 cL INAO glass, a worldwide reference for sensory evaluation). Moreover, a brand-new glass recently proposed as a universal glass for the tasting of still and sparkling wines (the 45 cL ŒnoXpert) was also examined. A kind of CO₂ fingerprint, evolving in space and time, was unveiled for each glass type. After a strong increase of the gas-phase CO₂ concentration observed within the several seconds of the pouring step, a vertical stratification of CO₂ was unveiled in the headspace of glasses, with decreasing CO₂ concentrations while moving away from the champagne surface, and as time elapses.

1. Liger-Belair G., Cilindre C., Cilindre C., Gougeon D. R., Lucio M., Gegefügi I., Jeandet P., Schmitt-Kopplin P., Unraveling different chemical fingerprints between a champagne wine and its aerosols, Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16545-16459
2. Cilindre C., Conreux, A., Liger-Belair G., Simultaneous monitoring of gaseous CO₂ and ethanol above champagne glasses via micro-gas chromatography (μGC), Journal of Agricultural and Food Chemistry, 2011, 59, 7317-7323
3. Moriaux A.-L., Vallon R., Cilindre C., Parvitte B., Liger-Belair G. and Zéninari V., Development and validation of a diode laser sensor for gas-phase CO₂ monitoring above champagne and sparkling wines, Sensors and Actuators B: Chemical, 2018, 257, 745-752
4. Moriaux A.-L., Vallon R., Cilindre C., Polak F., Parvitte B., Liger-Belair G. and Zéninari V., A first step towards the mapping of gas-phase CO₂ in the headspace of champagne glasses, Infrared Physics & Technology, 2020, 109, 103437
5. Moriaux A.-L., Vallon R., Lecasse F., Chauvin N., Parvitte B., Zéninari V., Liger-Belair G., Cilindre C., How does gas-phase CO₂ evolve in the headspace of champagne glasses? Journal of Agricultural and Food Chemistry, 2021, 69, 2262-2270

 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Vincent Alfonso¹, Florian Lecasse¹, Raphaël Vallon¹, Clara Cilindre¹, Bertrand Parvitte¹, Virginie Zéninari¹ And Gé-Rard Liger-Belair¹

1. GSMA, UMR CNRS 7331, Université de Reims Champagne-Ardenne, 51697 Reims Cedex 2, France

Contact the author*

Keywords

TDLAS, Champagne, CO₂, Effervescence

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.