terclim by ICS banner
IVES 9 IVES Conference Series 9 MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

Abstract

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet. Therefore, to enhance the champagne tasting experience, monitoring gas-phase CO₂ in the headspace of champagne glasses has become a topic of interest over the last dozen years [2-5].

Based on the Tunable Diode Laser Absorption Spectroscopy (TDLAS), a CO₂-Diode Laser Sensor (CO₂- DLS) with two distributed feedback (DFB) diode lasers emitting at 4986.0 and 3728.6 cm-1 was deve- loped to allow the fine monitoring of gas-phase CO₂ over a large concentration range from 0.5% to 100%. Moreover, to perform the simultaneous spatial mapping of CO₂ along a multipoint array in the headspace of champagne glasses, two couples of galvanometric mirrors were combined with a couple of parabolic mirrors symmetrically positioned on either side of the glass headspace [4,5]. Thereby, the CO₂-DLS shows a very high temporal resolution thus enabling an accurate monitoring and mapping of gas-phase CO₂ in the headspace of glasses.

Real-time monitoring of gas-phase CO₂ was thus performed with the CO₂-DLS, under static tasting conditions, in the headspace of several types of champagne glasses showing distinct shapes and volume capacities (including the 21 cL INAO glass, a worldwide reference for sensory evaluation). Moreover, a brand-new glass recently proposed as a universal glass for the tasting of still and sparkling wines (the 45 cL ŒnoXpert) was also examined. A kind of CO₂ fingerprint, evolving in space and time, was unveiled for each glass type. After a strong increase of the gas-phase CO₂ concentration observed within the several seconds of the pouring step, a vertical stratification of CO₂ was unveiled in the headspace of glasses, with decreasing CO₂ concentrations while moving away from the champagne surface, and as time elapses.

1. Liger-Belair G., Cilindre C., Cilindre C., Gougeon D. R., Lucio M., Gegefügi I., Jeandet P., Schmitt-Kopplin P., Unraveling different chemical fingerprints between a champagne wine and its aerosols, Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16545-16459
2. Cilindre C., Conreux, A., Liger-Belair G., Simultaneous monitoring of gaseous CO₂ and ethanol above champagne glasses via micro-gas chromatography (μGC), Journal of Agricultural and Food Chemistry, 2011, 59, 7317-7323
3. Moriaux A.-L., Vallon R., Cilindre C., Parvitte B., Liger-Belair G. and Zéninari V., Development and validation of a diode laser sensor for gas-phase CO₂ monitoring above champagne and sparkling wines, Sensors and Actuators B: Chemical, 2018, 257, 745-752
4. Moriaux A.-L., Vallon R., Cilindre C., Polak F., Parvitte B., Liger-Belair G. and Zéninari V., A first step towards the mapping of gas-phase CO₂ in the headspace of champagne glasses, Infrared Physics & Technology, 2020, 109, 103437
5. Moriaux A.-L., Vallon R., Lecasse F., Chauvin N., Parvitte B., Zéninari V., Liger-Belair G., Cilindre C., How does gas-phase CO₂ evolve in the headspace of champagne glasses? Journal of Agricultural and Food Chemistry, 2021, 69, 2262-2270

 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Vincent Alfonso¹, Florian Lecasse¹, Raphaël Vallon¹, Clara Cilindre¹, Bertrand Parvitte¹, Virginie Zéninari¹ And Gé-Rard Liger-Belair¹

1. GSMA, UMR CNRS 7331, Université de Reims Champagne-Ardenne, 51697 Reims Cedex 2, France

Contact the author*

Keywords

TDLAS, Champagne, CO₂, Effervescence

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴.