terclim by ICS banner
IVES 9 IVES Conference Series 9 MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

Abstract

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet. Therefore, to enhance the champagne tasting experience, monitoring gas-phase CO₂ in the headspace of champagne glasses has become a topic of interest over the last dozen years [2-5].

Based on the Tunable Diode Laser Absorption Spectroscopy (TDLAS), a CO₂-Diode Laser Sensor (CO₂- DLS) with two distributed feedback (DFB) diode lasers emitting at 4986.0 and 3728.6 cm-1 was deve- loped to allow the fine monitoring of gas-phase CO₂ over a large concentration range from 0.5% to 100%. Moreover, to perform the simultaneous spatial mapping of CO₂ along a multipoint array in the headspace of champagne glasses, two couples of galvanometric mirrors were combined with a couple of parabolic mirrors symmetrically positioned on either side of the glass headspace [4,5]. Thereby, the CO₂-DLS shows a very high temporal resolution thus enabling an accurate monitoring and mapping of gas-phase CO₂ in the headspace of glasses.

Real-time monitoring of gas-phase CO₂ was thus performed with the CO₂-DLS, under static tasting conditions, in the headspace of several types of champagne glasses showing distinct shapes and volume capacities (including the 21 cL INAO glass, a worldwide reference for sensory evaluation). Moreover, a brand-new glass recently proposed as a universal glass for the tasting of still and sparkling wines (the 45 cL ŒnoXpert) was also examined. A kind of CO₂ fingerprint, evolving in space and time, was unveiled for each glass type. After a strong increase of the gas-phase CO₂ concentration observed within the several seconds of the pouring step, a vertical stratification of CO₂ was unveiled in the headspace of glasses, with decreasing CO₂ concentrations while moving away from the champagne surface, and as time elapses.

1. Liger-Belair G., Cilindre C., Cilindre C., Gougeon D. R., Lucio M., Gegefügi I., Jeandet P., Schmitt-Kopplin P., Unraveling different chemical fingerprints between a champagne wine and its aerosols, Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16545-16459
2. Cilindre C., Conreux, A., Liger-Belair G., Simultaneous monitoring of gaseous CO₂ and ethanol above champagne glasses via micro-gas chromatography (μGC), Journal of Agricultural and Food Chemistry, 2011, 59, 7317-7323
3. Moriaux A.-L., Vallon R., Cilindre C., Parvitte B., Liger-Belair G. and Zéninari V., Development and validation of a diode laser sensor for gas-phase CO₂ monitoring above champagne and sparkling wines, Sensors and Actuators B: Chemical, 2018, 257, 745-752
4. Moriaux A.-L., Vallon R., Cilindre C., Polak F., Parvitte B., Liger-Belair G. and Zéninari V., A first step towards the mapping of gas-phase CO₂ in the headspace of champagne glasses, Infrared Physics & Technology, 2020, 109, 103437
5. Moriaux A.-L., Vallon R., Lecasse F., Chauvin N., Parvitte B., Zéninari V., Liger-Belair G., Cilindre C., How does gas-phase CO₂ evolve in the headspace of champagne glasses? Journal of Agricultural and Food Chemistry, 2021, 69, 2262-2270

 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Vincent Alfonso¹, Florian Lecasse¹, Raphaël Vallon¹, Clara Cilindre¹, Bertrand Parvitte¹, Virginie Zéninari¹ And Gé-Rard Liger-Belair¹

1. GSMA, UMR CNRS 7331, Université de Reims Champagne-Ardenne, 51697 Reims Cedex 2, France

Contact the author*

Keywords

TDLAS, Champagne, CO₂, Effervescence

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

EVOLUTION OF CHEMICAL AND SENSORIAL PROFILE OF WINES ELABORATED WITH THEIR OWN TOASTED VINE-SHOOTS AND MICRO-OXYGENATION

The positive contribution of toasted vine-shoots (SEGs, Shoot from vines – Enological – Granule) used in winemaking to the chemical and sensory profile of wines has been widely proven. However, the combination of this new enological tool with other winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far. It is known that micro-oxygenation is used in wineries to stabilizes color, improves structure or combining with oak alternatives products to achieve a more effective aroma integration of wines. For that, its implementation in combination with SEGs could result in differentiated wines.

IMPACT OF NEW BIO STIMULANTS ON GRAPE SECONDARY METABOLITES UNDER CLIMATE CHANGE CONDITIONS

In a context of climate change and excessive use of agrochemical products, sustainable approaches for environmental and human health such as the use of bio stimulants in viticulture represent a potential option, against abiotic and biotic threats. Bio stimulants are organic compounds, microbes, or a combination of both, that stimulate plant’s vital processes, allowing high yields and good quality products. In vines, may trigger an innate immune response leading to the synthesis of secondary metabolites, key compounds for the organoleptic properties of grapes and wines.