terclim by ICS banner
IVES 9 IVES Conference Series 9 MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

Abstract

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet. Therefore, to enhance the champagne tasting experience, monitoring gas-phase CO₂ in the headspace of champagne glasses has become a topic of interest over the last dozen years [2-5].

Based on the Tunable Diode Laser Absorption Spectroscopy (TDLAS), a CO₂-Diode Laser Sensor (CO₂- DLS) with two distributed feedback (DFB) diode lasers emitting at 4986.0 and 3728.6 cm-1 was deve- loped to allow the fine monitoring of gas-phase CO₂ over a large concentration range from 0.5% to 100%. Moreover, to perform the simultaneous spatial mapping of CO₂ along a multipoint array in the headspace of champagne glasses, two couples of galvanometric mirrors were combined with a couple of parabolic mirrors symmetrically positioned on either side of the glass headspace [4,5]. Thereby, the CO₂-DLS shows a very high temporal resolution thus enabling an accurate monitoring and mapping of gas-phase CO₂ in the headspace of glasses.

Real-time monitoring of gas-phase CO₂ was thus performed with the CO₂-DLS, under static tasting conditions, in the headspace of several types of champagne glasses showing distinct shapes and volume capacities (including the 21 cL INAO glass, a worldwide reference for sensory evaluation). Moreover, a brand-new glass recently proposed as a universal glass for the tasting of still and sparkling wines (the 45 cL ŒnoXpert) was also examined. A kind of CO₂ fingerprint, evolving in space and time, was unveiled for each glass type. After a strong increase of the gas-phase CO₂ concentration observed within the several seconds of the pouring step, a vertical stratification of CO₂ was unveiled in the headspace of glasses, with decreasing CO₂ concentrations while moving away from the champagne surface, and as time elapses.

1. Liger-Belair G., Cilindre C., Cilindre C., Gougeon D. R., Lucio M., Gegefügi I., Jeandet P., Schmitt-Kopplin P., Unraveling different chemical fingerprints between a champagne wine and its aerosols, Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16545-16459
2. Cilindre C., Conreux, A., Liger-Belair G., Simultaneous monitoring of gaseous CO₂ and ethanol above champagne glasses via micro-gas chromatography (μGC), Journal of Agricultural and Food Chemistry, 2011, 59, 7317-7323
3. Moriaux A.-L., Vallon R., Cilindre C., Parvitte B., Liger-Belair G. and Zéninari V., Development and validation of a diode laser sensor for gas-phase CO₂ monitoring above champagne and sparkling wines, Sensors and Actuators B: Chemical, 2018, 257, 745-752
4. Moriaux A.-L., Vallon R., Cilindre C., Polak F., Parvitte B., Liger-Belair G. and Zéninari V., A first step towards the mapping of gas-phase CO₂ in the headspace of champagne glasses, Infrared Physics & Technology, 2020, 109, 103437
5. Moriaux A.-L., Vallon R., Lecasse F., Chauvin N., Parvitte B., Zéninari V., Liger-Belair G., Cilindre C., How does gas-phase CO₂ evolve in the headspace of champagne glasses? Journal of Agricultural and Food Chemistry, 2021, 69, 2262-2270

 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Vincent Alfonso¹, Florian Lecasse¹, Raphaël Vallon¹, Clara Cilindre¹, Bertrand Parvitte¹, Virginie Zéninari¹ And Gé-Rard Liger-Belair¹

1. GSMA, UMR CNRS 7331, Université de Reims Champagne-Ardenne, 51697 Reims Cedex 2, France

Contact the author*

Keywords

TDLAS, Champagne, CO₂, Effervescence

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

Managing changes in taste: lessons from champagne in britain 1800-1914

This paper focuses on how taste in wine (and other foods) changes and the implications of this process
for producers and merchants.
It draws primarily on the changing taste of and taste for champagne in Britain in the 19th century. Between 1850 and 1880 champagne went from a dosage level of around 20% (20 grams sugar / litre) to 0%. Champagne became the ‘dinner wine of the elite – drunk with roast meat and savoury dishes.
Contemporaries accepted that while most people could distinguish the taste of good champagne from that of bad, very few could distinguish very good from good.

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.