terclim by ICS banner
IVES 9 IVES Conference Series 9 MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

Abstract

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet. Therefore, to enhance the champagne tasting experience, monitoring gas-phase CO₂ in the headspace of champagne glasses has become a topic of interest over the last dozen years [2-5].

Based on the Tunable Diode Laser Absorption Spectroscopy (TDLAS), a CO₂-Diode Laser Sensor (CO₂- DLS) with two distributed feedback (DFB) diode lasers emitting at 4986.0 and 3728.6 cm-1 was deve- loped to allow the fine monitoring of gas-phase CO₂ over a large concentration range from 0.5% to 100%. Moreover, to perform the simultaneous spatial mapping of CO₂ along a multipoint array in the headspace of champagne glasses, two couples of galvanometric mirrors were combined with a couple of parabolic mirrors symmetrically positioned on either side of the glass headspace [4,5]. Thereby, the CO₂-DLS shows a very high temporal resolution thus enabling an accurate monitoring and mapping of gas-phase CO₂ in the headspace of glasses.

Real-time monitoring of gas-phase CO₂ was thus performed with the CO₂-DLS, under static tasting conditions, in the headspace of several types of champagne glasses showing distinct shapes and volume capacities (including the 21 cL INAO glass, a worldwide reference for sensory evaluation). Moreover, a brand-new glass recently proposed as a universal glass for the tasting of still and sparkling wines (the 45 cL ŒnoXpert) was also examined. A kind of CO₂ fingerprint, evolving in space and time, was unveiled for each glass type. After a strong increase of the gas-phase CO₂ concentration observed within the several seconds of the pouring step, a vertical stratification of CO₂ was unveiled in the headspace of glasses, with decreasing CO₂ concentrations while moving away from the champagne surface, and as time elapses.

1. Liger-Belair G., Cilindre C., Cilindre C., Gougeon D. R., Lucio M., Gegefügi I., Jeandet P., Schmitt-Kopplin P., Unraveling different chemical fingerprints between a champagne wine and its aerosols, Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16545-16459
2. Cilindre C., Conreux, A., Liger-Belair G., Simultaneous monitoring of gaseous CO₂ and ethanol above champagne glasses via micro-gas chromatography (μGC), Journal of Agricultural and Food Chemistry, 2011, 59, 7317-7323
3. Moriaux A.-L., Vallon R., Cilindre C., Parvitte B., Liger-Belair G. and Zéninari V., Development and validation of a diode laser sensor for gas-phase CO₂ monitoring above champagne and sparkling wines, Sensors and Actuators B: Chemical, 2018, 257, 745-752
4. Moriaux A.-L., Vallon R., Cilindre C., Polak F., Parvitte B., Liger-Belair G. and Zéninari V., A first step towards the mapping of gas-phase CO₂ in the headspace of champagne glasses, Infrared Physics & Technology, 2020, 109, 103437
5. Moriaux A.-L., Vallon R., Lecasse F., Chauvin N., Parvitte B., Zéninari V., Liger-Belair G., Cilindre C., How does gas-phase CO₂ evolve in the headspace of champagne glasses? Journal of Agricultural and Food Chemistry, 2021, 69, 2262-2270

 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Vincent Alfonso¹, Florian Lecasse¹, Raphaël Vallon¹, Clara Cilindre¹, Bertrand Parvitte¹, Virginie Zéninari¹ And Gé-Rard Liger-Belair¹

1. GSMA, UMR CNRS 7331, Université de Reims Champagne-Ardenne, 51697 Reims Cedex 2, France

Contact the author*

Keywords

TDLAS, Champagne, CO₂, Effervescence

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level.

REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

In recent years, vineyards in Australia, the US, Canada, Chile, South Africa and Europe have been exposed to smoke from wildfires. Wines made from smoke-affected grapes often exhibit unpleasant smoky, ashy characters, attributed to the presence of smoke-derived volatile compounds, including volatile phenols (which occur in free and glycosylated forms). Various strategies for remediation of smoke tainted wine have been evaluated. The most effective strategies involve the removal of smoke taint compounds via the addition of adsorbent materials such as activated carbon, which can either be added directly or used in combination with nanofiltration. However, these treatments often simultaneously remove wine constituents responsible for desirable aroma, flavour and colour attributes.

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.