terclim by ICS banner
IVES 9 IVES Conference Series 9 OTA DEGRADATION BY BACTERIAL LACCASEST

OTA DEGRADATION BY BACTERIAL LACCASEST

Abstract

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degrada-tion, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking. OTA degradation is paramount given that it has been described as human-health harmful according to EFSA.

The work aimed to evaluate the OTA degrading capacity of three heterologous LAB laccases expressed in E. coli. The experimental procedure consisted on testing bacterial laccases from L. lactis, L. paracasei and P. parvulus in acetate buffer pH 4 with or without CuSO4 and OTA in presence and absence of several concentrations of epicatequin and complete polyphenolic extracts from red and white wine as media-tors. Degradation of OTA was followed and quantified by analyzing samples with HPLC-QToF-MS.

According to the results, OTA degradation in the reaction buffer with copper was at least three times higher than without copper. In addition, 0.75 mM epicatequin was the optimum concentration to obtain the highest OTA degradation with L. paracasei laccase (78%). Then, P. parvulus and L. lactis laccases were tested at this concentration, averaging 70% degradation. Finally, mean values of 40% and 10% OTA de-gradation were revealed when using polyphenolic extracts from red and white wine, respectively, for the three laccases. The application of these LAB laccases on OTA degradation in real wine needs to be further explored.

 

1. Fuchs S., et al. (2008). Food Chem Toxicol; 46:1398-1407.
2. Loi M., et al. (2018). Food Control; 90: 401-406.
3. Luz C., et al. (2018). Food Chem Toxicol; 112: 60-66.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Isaac Monroy¹, Isabel Pardo¹, Sergi Ferrer¹, José Pérez-Navarro², Sergio Gómez-Alonso²

1. ENOLAB, Institute BIOTECMED and Microbiology and Ecology Dept, University of Valencia
2. IRICA, University of Castilla-La Mancha

Contact the author*

Keywords

Ochratoxin A reduction, lactic acid bacteria laccases, polyphenolic compounds, redox media-tors

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall. Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

PERCEPTUAL INTERACTIONS PHENOMENA INVOLVING VARIOUS VOLATILE COMPOUND FAMILIES LINKED TO SOME FRUITY NOTES IN BORDEAUX RED WINES

Fruity notes play a key role in the consumer’s appreciation of Bordeaux red wines. If literature provides a lot of knowledge about the nature of volatile compounds involved in this fruity expression, the sensory phenomena involving these compounds in mixture still need to be explored. Considering previous sensory works about the impact of esters and some overripening compounds, the goal of this work was to study the implication of perceptual interactions involving red wine odorant compounds of diverse origins and described as potentially affecting fruity aromatic expression.

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.