terclim by ICS banner
IVES 9 IVES Conference Series 9 OTA DEGRADATION BY BACTERIAL LACCASEST

OTA DEGRADATION BY BACTERIAL LACCASEST

Abstract

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degrada-tion, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking. OTA degradation is paramount given that it has been described as human-health harmful according to EFSA.

The work aimed to evaluate the OTA degrading capacity of three heterologous LAB laccases expressed in E. coli. The experimental procedure consisted on testing bacterial laccases from L. lactis, L. paracasei and P. parvulus in acetate buffer pH 4 with or without CuSO4 and OTA in presence and absence of several concentrations of epicatequin and complete polyphenolic extracts from red and white wine as media-tors. Degradation of OTA was followed and quantified by analyzing samples with HPLC-QToF-MS.

According to the results, OTA degradation in the reaction buffer with copper was at least three times higher than without copper. In addition, 0.75 mM epicatequin was the optimum concentration to obtain the highest OTA degradation with L. paracasei laccase (78%). Then, P. parvulus and L. lactis laccases were tested at this concentration, averaging 70% degradation. Finally, mean values of 40% and 10% OTA de-gradation were revealed when using polyphenolic extracts from red and white wine, respectively, for the three laccases. The application of these LAB laccases on OTA degradation in real wine needs to be further explored.

 

1. Fuchs S., et al. (2008). Food Chem Toxicol; 46:1398-1407.
2. Loi M., et al. (2018). Food Control; 90: 401-406.
3. Luz C., et al. (2018). Food Chem Toxicol; 112: 60-66.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Isaac Monroy¹, Isabel Pardo¹, Sergi Ferrer¹, José Pérez-Navarro², Sergio Gómez-Alonso²

1. ENOLAB, Institute BIOTECMED and Microbiology and Ecology Dept, University of Valencia
2. IRICA, University of Castilla-La Mancha

Contact the author*

Keywords

Ochratoxin A reduction, lactic acid bacteria laccases, polyphenolic compounds, redox media-tors

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

The effects of (A) grape freezing, and (B) malolactic fermentation, have been evaluated on the chemical and colorimetric profiles of red wines from Schiava grossa cv. grapes, thus prone to colour instability. The aim was to observe if specific variables (e.g. grape freezing) could improve the extraction and stability of pigments. The samples were studied from musts up to twelve months in bottle. The study was conducted with independent parallel micro-vinifications (12 = 4 theses x 3 replicates) under strictly-controlled conditions.

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray.

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.