terclim by ICS banner
IVES 9 IVES Conference Series 9 OTA DEGRADATION BY BACTERIAL LACCASEST

OTA DEGRADATION BY BACTERIAL LACCASEST

Abstract

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degrada-tion, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking. OTA degradation is paramount given that it has been described as human-health harmful according to EFSA.

The work aimed to evaluate the OTA degrading capacity of three heterologous LAB laccases expressed in E. coli. The experimental procedure consisted on testing bacterial laccases from L. lactis, L. paracasei and P. parvulus in acetate buffer pH 4 with or without CuSO4 and OTA in presence and absence of several concentrations of epicatequin and complete polyphenolic extracts from red and white wine as media-tors. Degradation of OTA was followed and quantified by analyzing samples with HPLC-QToF-MS.

According to the results, OTA degradation in the reaction buffer with copper was at least three times higher than without copper. In addition, 0.75 mM epicatequin was the optimum concentration to obtain the highest OTA degradation with L. paracasei laccase (78%). Then, P. parvulus and L. lactis laccases were tested at this concentration, averaging 70% degradation. Finally, mean values of 40% and 10% OTA de-gradation were revealed when using polyphenolic extracts from red and white wine, respectively, for the three laccases. The application of these LAB laccases on OTA degradation in real wine needs to be further explored.

 

1. Fuchs S., et al. (2008). Food Chem Toxicol; 46:1398-1407.
2. Loi M., et al. (2018). Food Control; 90: 401-406.
3. Luz C., et al. (2018). Food Chem Toxicol; 112: 60-66.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Isaac Monroy¹, Isabel Pardo¹, Sergi Ferrer¹, José Pérez-Navarro², Sergio Gómez-Alonso²

1. ENOLAB, Institute BIOTECMED and Microbiology and Ecology Dept, University of Valencia
2. IRICA, University of Castilla-La Mancha

Contact the author*

Keywords

Ochratoxin A reduction, lactic acid bacteria laccases, polyphenolic compounds, redox media-tors

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification
of the sensory balance and the development for example of cooked fruit aromas.

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.