terclim by ICS banner
IVES 9 IVES Conference Series 9 UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

Abstract

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L). Concentrations up to 340 ng/L were evidenced in the most oxidized red wines as well as MND content up scaling was observed whatever the oxidation level. Very recently, we identified two new hydroxyketones (2-hydroxy-3-methylnonan-4-one) associated with MND distribution in aged red wines. We demonstrated that in red wine, their oxidation can produce MND (Peterson et al., 2020). To date, the origin of these precursors were not studied. During preliminary experiments, the presence in wine of a glycosylated form of this hydroxyketone was suggested by hydrolysis experiments. Based on the literature, we hypothesized the presence of a corresponding glucosylated precursor and developed a strategy for its organic multi-step synthesis. First, the MND hydroxylated precursor of MND was synthesized by aldolization (Crévisy et al., 2001). Then, based on literature, we optimized strategies for the O- glycosidation step. For this, the tetrabenzylated glucose was activated by imidation reaction (Chatterjee et al., 2018). Several deprotection methods for the glucoside moiety were then experimented. Finally, the use of palladium on carbon for the hydrogenolytic debenzylation lead to the target compound. A multi-step purification process (LC, HPLC) was carried out to reach sufficient purity. Glycosylated standard was characterized by Nuclear Magnetic Resonance (NMR) and by High Resolution Mass Spectrometry (HRMS) and then used to develop an LC-MS/MS for its identification in grapes and wines. The first analytical results lead to look deeper into the search for glucosylated compounds in various oenolo-gical samples (grapes, musts, red wines), affected or not by the nuances of “dried fruits”.

 

1. Peterson, A.; Cholet, C.; Geny, L.; Darriet, P.; Landais, Y.; Pons, A. Identification and analysis of new α- and β-hydroxy ketones related to the formation of 3-methyl-2,4-nonanedione in Musts and red wines. Food Chem. 2020, 305, 12548.
2. Pons, A.; Lavigne, V.; Darriet, P.; Dubourdieu, D. Role of 3-methyl-2,4-nonanedione in the flavor of aged red wines. J. Agric. Food Chem. 2013, 61 (30), 7373–7380.
3. Crévisy, C.; Wietrich, M.; Le Boulaire, V.; Uma, R.; Grée, R. From allylic alcohols to aldols via a novel, tandem isomerization–condensation catalyzed by Fe(CO)5. Tetrahedron Lett. 2001, 42 (3), 395–398.
4. Chatterjee, S.; Moon, S.; Hentschel, F.; Gilmore, K.; Seeberger, PH. An Empirical Understanding of the Glycosylation Reaction. J Am Chem Soc. 2018, 140 (38), 11942-11953.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

D. Lamliji1,2,3, C. Thibon2,3, S. Shinkaruk1,2,3, A. Pons2,3,4
1. Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
2. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France.
3. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France.
4. Seguin Moreau France, Z.I. Merpins, BP 94, 16103 Cognac, France.

Contact the author*

Keywords

cooked fruit aroma, 3-methyl-2,4-nonanedione, glucosylated precursors, identification

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an impor-tant parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.