terclim by ICS banner
IVES 9 IVES Conference Series 9 UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

Abstract

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L). Concentrations up to 340 ng/L were evidenced in the most oxidized red wines as well as MND content up scaling was observed whatever the oxidation level. Very recently, we identified two new hydroxyketones (2-hydroxy-3-methylnonan-4-one) associated with MND distribution in aged red wines. We demonstrated that in red wine, their oxidation can produce MND (Peterson et al., 2020). To date, the origin of these precursors were not studied. During preliminary experiments, the presence in wine of a glycosylated form of this hydroxyketone was suggested by hydrolysis experiments. Based on the literature, we hypothesized the presence of a corresponding glucosylated precursor and developed a strategy for its organic multi-step synthesis. First, the MND hydroxylated precursor of MND was synthesized by aldolization (Crévisy et al., 2001). Then, based on literature, we optimized strategies for the O- glycosidation step. For this, the tetrabenzylated glucose was activated by imidation reaction (Chatterjee et al., 2018). Several deprotection methods for the glucoside moiety were then experimented. Finally, the use of palladium on carbon for the hydrogenolytic debenzylation lead to the target compound. A multi-step purification process (LC, HPLC) was carried out to reach sufficient purity. Glycosylated standard was characterized by Nuclear Magnetic Resonance (NMR) and by High Resolution Mass Spectrometry (HRMS) and then used to develop an LC-MS/MS for its identification in grapes and wines. The first analytical results lead to look deeper into the search for glucosylated compounds in various oenolo-gical samples (grapes, musts, red wines), affected or not by the nuances of “dried fruits”.

 

1. Peterson, A.; Cholet, C.; Geny, L.; Darriet, P.; Landais, Y.; Pons, A. Identification and analysis of new α- and β-hydroxy ketones related to the formation of 3-methyl-2,4-nonanedione in Musts and red wines. Food Chem. 2020, 305, 12548.
2. Pons, A.; Lavigne, V.; Darriet, P.; Dubourdieu, D. Role of 3-methyl-2,4-nonanedione in the flavor of aged red wines. J. Agric. Food Chem. 2013, 61 (30), 7373–7380.
3. Crévisy, C.; Wietrich, M.; Le Boulaire, V.; Uma, R.; Grée, R. From allylic alcohols to aldols via a novel, tandem isomerization–condensation catalyzed by Fe(CO)5. Tetrahedron Lett. 2001, 42 (3), 395–398.
4. Chatterjee, S.; Moon, S.; Hentschel, F.; Gilmore, K.; Seeberger, PH. An Empirical Understanding of the Glycosylation Reaction. J Am Chem Soc. 2018, 140 (38), 11942-11953.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

D. Lamliji1,2,3, C. Thibon2,3, S. Shinkaruk1,2,3, A. Pons2,3,4
1. Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
2. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France.
3. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France.
4. Seguin Moreau France, Z.I. Merpins, BP 94, 16103 Cognac, France.

Contact the author*

Keywords

cooked fruit aroma, 3-methyl-2,4-nonanedione, glucosylated precursors, identification

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fun-gicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms.

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.