terclim by ICS banner
IVES 9 IVES Conference Series 9 UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

Abstract

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L). Concentrations up to 340 ng/L were evidenced in the most oxidized red wines as well as MND content up scaling was observed whatever the oxidation level. Very recently, we identified two new hydroxyketones (2-hydroxy-3-methylnonan-4-one) associated with MND distribution in aged red wines. We demonstrated that in red wine, their oxidation can produce MND (Peterson et al., 2020). To date, the origin of these precursors were not studied. During preliminary experiments, the presence in wine of a glycosylated form of this hydroxyketone was suggested by hydrolysis experiments. Based on the literature, we hypothesized the presence of a corresponding glucosylated precursor and developed a strategy for its organic multi-step synthesis. First, the MND hydroxylated precursor of MND was synthesized by aldolization (Crévisy et al., 2001). Then, based on literature, we optimized strategies for the O- glycosidation step. For this, the tetrabenzylated glucose was activated by imidation reaction (Chatterjee et al., 2018). Several deprotection methods for the glucoside moiety were then experimented. Finally, the use of palladium on carbon for the hydrogenolytic debenzylation lead to the target compound. A multi-step purification process (LC, HPLC) was carried out to reach sufficient purity. Glycosylated standard was characterized by Nuclear Magnetic Resonance (NMR) and by High Resolution Mass Spectrometry (HRMS) and then used to develop an LC-MS/MS for its identification in grapes and wines. The first analytical results lead to look deeper into the search for glucosylated compounds in various oenolo-gical samples (grapes, musts, red wines), affected or not by the nuances of “dried fruits”.

 

1. Peterson, A.; Cholet, C.; Geny, L.; Darriet, P.; Landais, Y.; Pons, A. Identification and analysis of new α- and β-hydroxy ketones related to the formation of 3-methyl-2,4-nonanedione in Musts and red wines. Food Chem. 2020, 305, 12548.
2. Pons, A.; Lavigne, V.; Darriet, P.; Dubourdieu, D. Role of 3-methyl-2,4-nonanedione in the flavor of aged red wines. J. Agric. Food Chem. 2013, 61 (30), 7373–7380.
3. Crévisy, C.; Wietrich, M.; Le Boulaire, V.; Uma, R.; Grée, R. From allylic alcohols to aldols via a novel, tandem isomerization–condensation catalyzed by Fe(CO)5. Tetrahedron Lett. 2001, 42 (3), 395–398.
4. Chatterjee, S.; Moon, S.; Hentschel, F.; Gilmore, K.; Seeberger, PH. An Empirical Understanding of the Glycosylation Reaction. J Am Chem Soc. 2018, 140 (38), 11942-11953.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

D. Lamliji1,2,3, C. Thibon2,3, S. Shinkaruk1,2,3, A. Pons2,3,4
1. Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
2. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France.
3. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France.
4. Seguin Moreau France, Z.I. Merpins, BP 94, 16103 Cognac, France.

Contact the author*

Keywords

cooked fruit aroma, 3-methyl-2,4-nonanedione, glucosylated precursors, identification

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

EVOLUTION OF CHEMICAL AND SENSORIAL PROFILE OF WINES ELABORATED WITH THEIR OWN TOASTED VINE-SHOOTS AND MICRO-OXYGENATION

The positive contribution of toasted vine-shoots (SEGs, Shoot from vines – Enological – Granule) used in winemaking to the chemical and sensory profile of wines has been widely proven. However, the combination of this new enological tool with other winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far. It is known that micro-oxygenation is used in wineries to stabilizes color, improves structure or combining with oak alternatives products to achieve a more effective aroma integration of wines. For that, its implementation in combination with SEGs could result in differentiated wines.

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray.