terclim by ICS banner
IVES 9 IVES Conference Series 9 UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

Abstract

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L). Concentrations up to 340 ng/L were evidenced in the most oxidized red wines as well as MND content up scaling was observed whatever the oxidation level. Very recently, we identified two new hydroxyketones (2-hydroxy-3-methylnonan-4-one) associated with MND distribution in aged red wines. We demonstrated that in red wine, their oxidation can produce MND (Peterson et al., 2020). To date, the origin of these precursors were not studied. During preliminary experiments, the presence in wine of a glycosylated form of this hydroxyketone was suggested by hydrolysis experiments. Based on the literature, we hypothesized the presence of a corresponding glucosylated precursor and developed a strategy for its organic multi-step synthesis. First, the MND hydroxylated precursor of MND was synthesized by aldolization (Crévisy et al., 2001). Then, based on literature, we optimized strategies for the O- glycosidation step. For this, the tetrabenzylated glucose was activated by imidation reaction (Chatterjee et al., 2018). Several deprotection methods for the glucoside moiety were then experimented. Finally, the use of palladium on carbon for the hydrogenolytic debenzylation lead to the target compound. A multi-step purification process (LC, HPLC) was carried out to reach sufficient purity. Glycosylated standard was characterized by Nuclear Magnetic Resonance (NMR) and by High Resolution Mass Spectrometry (HRMS) and then used to develop an LC-MS/MS for its identification in grapes and wines. The first analytical results lead to look deeper into the search for glucosylated compounds in various oenolo-gical samples (grapes, musts, red wines), affected or not by the nuances of “dried fruits”.

 

1. Peterson, A.; Cholet, C.; Geny, L.; Darriet, P.; Landais, Y.; Pons, A. Identification and analysis of new α- and β-hydroxy ketones related to the formation of 3-methyl-2,4-nonanedione in Musts and red wines. Food Chem. 2020, 305, 12548.
2. Pons, A.; Lavigne, V.; Darriet, P.; Dubourdieu, D. Role of 3-methyl-2,4-nonanedione in the flavor of aged red wines. J. Agric. Food Chem. 2013, 61 (30), 7373–7380.
3. Crévisy, C.; Wietrich, M.; Le Boulaire, V.; Uma, R.; Grée, R. From allylic alcohols to aldols via a novel, tandem isomerization–condensation catalyzed by Fe(CO)5. Tetrahedron Lett. 2001, 42 (3), 395–398.
4. Chatterjee, S.; Moon, S.; Hentschel, F.; Gilmore, K.; Seeberger, PH. An Empirical Understanding of the Glycosylation Reaction. J Am Chem Soc. 2018, 140 (38), 11942-11953.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

D. Lamliji1,2,3, C. Thibon2,3, S. Shinkaruk1,2,3, A. Pons2,3,4
1. Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
2. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France.
3. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France.
4. Seguin Moreau France, Z.I. Merpins, BP 94, 16103 Cognac, France.

Contact the author*

Keywords

cooked fruit aroma, 3-methyl-2,4-nonanedione, glucosylated precursors, identification

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.