terclim by ICS banner
IVES 9 IVES Conference Series 9 VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Abstract

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several methodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromato-graphy has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

Prior to the chromatography, a sample preparation step is almost always required, but unfortunately there is no extraction procedure that can aid in the detection of the wide range of volatile compounds that exists in a wine sample. Wine volatile profile is characterized to have thousands of compounds with varying chemical properties, like molecular weight, structure, polarity and molecular structures. Moreover, they exist in a wide range of concentration, which, sometimes implies that a pre-concentration step is also required, if the ones existing in very low concentrations are of interest. As far as sample preparation methods for the analysis of wine aroma concerns, one can found thousands of bibliographic references, but the most used ones are probably the liquid-liquid extraction (LLE) and the solid-phase microextraction (SPME). Extensive reviews on the different sample preparation methods that has been used for wine analysis, along with each one advantages and drawbacks, has already received researcher’s attention (Costa Freitas et al, 2012)

In light of the above, this work intents to discuss the use of two different sample preparation methods to quantify and identify volatile compounds in wines.

Two sample preparation methods were compared: a micro liquid-liquid extraction with 500mL of dichloromethane (based on Vilanova et al, 2010) and a HS-SPME (based on Pereira et al 2021). Chromatographic method was the same for both sample preparation method.

The number of compounds identified by HS-SPME was higher than the ones identified by micro-LLE. 26 compounds were identified in wines by both sample preparation methods. Since the majority of com-pounds identified by each sample preparation methodologies are different, choose to do one or another, or even both, should be taken into consideration when the goal is to go deep on volatile composition of wines.

 

1. M. Costa Freitas; M. D. R. Gomes da Silva; M. J. Cabrita (2012) “Sampling and sample preparation techniques for the determination of volatile components in grape juice, wine and alcoholic beverages” In Comprehensive Sampling and Sample Preparation. Volume 4, Pawliszyn J., Mondello L., Dugo P. Eds; Elsevier, Academic Press: Oxford, UK, pp 27–41, 2012. ISBN: 9780123813732
2. Singleton, V. e Rossi, J. (1965) Colorimetry of Total Phenolic Compounds with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticultura, 16, 144-158.
3. Mar Vilanova, Zlatina Genisheva, Antón Masa, José Maria Oliveira (2010). Correlation between volatile composition and sensory properties in Spanish Albariño wines. Microchemical Journal, 95, 240-246.
4. Pereira, C., Mendes, D., Dias, T., Garcia, R., da Silva, M. and Cabrita, M., 2021. Revealing the yeast modulation potential on amino acid composition and volatile profile of Arinto white wines by a combined chromatographic-based approach. Journal of Chromatography A, 1641, p.461991.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Nuno Martins¹, Maria João Cabrita1,2 Raquel Garcia1,2

1. MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainabi-lity Institute, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
2. Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal

Contact the author*

Keywords

red wine, volatiles, sample preparation, GC/TOFMS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

Malolactic fermentation (MLF) is a desired process to decrease acidity in wine. This fermentation, carried out mostly by Oenococcus oeni, is sometimes challenging due to the wine stress factors affecting this lactic acid bacterium. Wine is a harsh environment for microbial survival due to the presence of ethanol and the low pH, and with limited nutrients that compromise O. oeni development. This may result in slow or stuck fermentations. After the alcoholic fermentation the nutrients that remain in the medium, mainly released by yeast, can be used in a beneficial way by O. oeni during MLF.