terclim by ICS banner
IVES 9 IVES Conference Series 9 VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Abstract

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several methodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromato-graphy has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

Prior to the chromatography, a sample preparation step is almost always required, but unfortunately there is no extraction procedure that can aid in the detection of the wide range of volatile compounds that exists in a wine sample. Wine volatile profile is characterized to have thousands of compounds with varying chemical properties, like molecular weight, structure, polarity and molecular structures. Moreover, they exist in a wide range of concentration, which, sometimes implies that a pre-concentration step is also required, if the ones existing in very low concentrations are of interest. As far as sample preparation methods for the analysis of wine aroma concerns, one can found thousands of bibliographic references, but the most used ones are probably the liquid-liquid extraction (LLE) and the solid-phase microextraction (SPME). Extensive reviews on the different sample preparation methods that has been used for wine analysis, along with each one advantages and drawbacks, has already received researcher’s attention (Costa Freitas et al, 2012)

In light of the above, this work intents to discuss the use of two different sample preparation methods to quantify and identify volatile compounds in wines.

Two sample preparation methods were compared: a micro liquid-liquid extraction with 500mL of dichloromethane (based on Vilanova et al, 2010) and a HS-SPME (based on Pereira et al 2021). Chromatographic method was the same for both sample preparation method.

The number of compounds identified by HS-SPME was higher than the ones identified by micro-LLE. 26 compounds were identified in wines by both sample preparation methods. Since the majority of com-pounds identified by each sample preparation methodologies are different, choose to do one or another, or even both, should be taken into consideration when the goal is to go deep on volatile composition of wines.

 

1. M. Costa Freitas; M. D. R. Gomes da Silva; M. J. Cabrita (2012) “Sampling and sample preparation techniques for the determination of volatile components in grape juice, wine and alcoholic beverages” In Comprehensive Sampling and Sample Preparation. Volume 4, Pawliszyn J., Mondello L., Dugo P. Eds; Elsevier, Academic Press: Oxford, UK, pp 27–41, 2012. ISBN: 9780123813732
2. Singleton, V. e Rossi, J. (1965) Colorimetry of Total Phenolic Compounds with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticultura, 16, 144-158.
3. Mar Vilanova, Zlatina Genisheva, Antón Masa, José Maria Oliveira (2010). Correlation between volatile composition and sensory properties in Spanish Albariño wines. Microchemical Journal, 95, 240-246.
4. Pereira, C., Mendes, D., Dias, T., Garcia, R., da Silva, M. and Cabrita, M., 2021. Revealing the yeast modulation potential on amino acid composition and volatile profile of Arinto white wines by a combined chromatographic-based approach. Journal of Chromatography A, 1641, p.461991.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Nuno Martins¹, Maria João Cabrita1,2 Raquel Garcia1,2

1. MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainabi-lity Institute, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
2. Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal

Contact the author*

Keywords

red wine, volatiles, sample preparation, GC/TOFMS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.

PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

Champagne wines are produced via a two-step process: the first is an initial alcoholic fermentation of grape must that produces a still base wine, followed by a second fermentation in bottle – the prise de mousse – that produces the effervescence. This appellation produces non-vintage sparkling wines composed of still base wines assembled from different vintages, varieties, and regions. These base wines, or “reserve wines,” are typically conserved on their fine lies and used to compensate for quality variance between vintages (1). Continuously blending small amounts of these reserve wines into newer ones also facilitates preserving the producer’s “house style.”

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

Managing changes in taste: lessons from champagne in britain 1800-1914

This paper focuses on how taste in wine (and other foods) changes and the implications of this process
for producers and merchants.
It draws primarily on the changing taste of and taste for champagne in Britain in the 19th century. Between 1850 and 1880 champagne went from a dosage level of around 20% (20 grams sugar / litre) to 0%. Champagne became the ‘dinner wine of the elite – drunk with roast meat and savoury dishes.
Contemporaries accepted that while most people could distinguish the taste of good champagne from that of bad, very few could distinguish very good from good.

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.