terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

Abstract

The effects of (A) grape freezing, and (B) malolactic fermentation, have been evaluated on the chemical and colorimetric profiles of red wines from Schiava grossa cv. grapes, thus prone to colour instability. The aim was to observe if specific variables (e.g. grape freezing) could improve the extraction and stability of pigments. The samples were studied from musts up to twelve months in bottle. The study was conducted with independent parallel micro-vinifications (12 = 4 theses x 3 replicates) under strictly-controlled conditions. The measured parameters included: 1) sugars, organic acids and %ABV (measured by specific enzymatic methods or by OIV reference methods), 2) dissolved oxygen (measured according to OIV protocols), 3) semi-quantitative determination of pigments, profile of non-anthocyanidin phenols, and profile of condensed tannins (LC-QqQ/MS [1]), spectrophotometric indexes (Hue and Intensity), colorimetric indexes (CIELab parameters), and the volatile profiles (GCxGC-ToF/MS [2]). A striking relation among the abundances of four anthocyanidin monoglucosides (peonidin-3-glu, malvidin-3-glu, petunidin-3-glu, and cyanidin-3-glu) has been observed in the musts from frozen grapes, but not in wines from frozen or non-frozen grapes. Cyclic procyanidins showed neither significant differences in concentration in must and wine due to any specific applied factor, nor due to specific treatments (such as with bentonites), proving again their applicability as markers for the grape variety in wine [3]. A substantial drop in peonidin-3-glu over the vinification (the main anthocyanin in Schiava cv. grapes) was studied in relation to the applied study factors. Grape freezing increased the extraction of peonidin-3-glu in the must, though the rate of its subsequent loss was faster than in wines from non-frozen grapes. Nonethe-less, peonidin-3-glucoside was still more concentrated in the wines from frozen grapes than in wines from non-frozen grapes up to wine bottling. The wines made from frozen grapes and without malolac-tic fermentation had the highest colorimetric parameters a* (green→red), ΔE* (difference in colour), C* (chromaticity), and ΔH* (difference in tone) colorimetric parameters. b* (blue→yellow) was highest in wines from frozen grapes, but regardless of the application or not of the malolactic fermentation.

 

1. C Dupas de Matos, A., Longo, E., et al. (2020). Foods, vol. 9(4), p. 499
2. Poggesi, S., Dupas de Matos, A., Longo, E., et al. (2021). Molecules, vol. 26(20), p. 6245
3. Longo, E., Rossetti, F., Jouin, A., et al. (2019). Food chemistry, vol. 299, p. 125125

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Edoardo Longo1,2,*,†, Aakriti Darnal1,2, Adriana Teresa Ceci1,2, Simone Poggesi1,2,3, Tanja Mimmo², Emanuele Boselli1,2

1. Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13/B, 39100 Bolzano (Italy)
2. Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy)
3. Food experience and sensory testing laboratory (Feast), Massey University, Private Bag 11222, Palmerston North 4410 (New Zealand)

Contact the author*

Keywords

Colour instability, Grape freezing, Chemical profile, Colorimetry

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation.
To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.