terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

Abstract

The effects of (A) grape freezing, and (B) malolactic fermentation, have been evaluated on the chemical and colorimetric profiles of red wines from Schiava grossa cv. grapes, thus prone to colour instability. The aim was to observe if specific variables (e.g. grape freezing) could improve the extraction and stability of pigments. The samples were studied from musts up to twelve months in bottle. The study was conducted with independent parallel micro-vinifications (12 = 4 theses x 3 replicates) under strictly-controlled conditions. The measured parameters included: 1) sugars, organic acids and %ABV (measured by specific enzymatic methods or by OIV reference methods), 2) dissolved oxygen (measured according to OIV protocols), 3) semi-quantitative determination of pigments, profile of non-anthocyanidin phenols, and profile of condensed tannins (LC-QqQ/MS [1]), spectrophotometric indexes (Hue and Intensity), colorimetric indexes (CIELab parameters), and the volatile profiles (GCxGC-ToF/MS [2]). A striking relation among the abundances of four anthocyanidin monoglucosides (peonidin-3-glu, malvidin-3-glu, petunidin-3-glu, and cyanidin-3-glu) has been observed in the musts from frozen grapes, but not in wines from frozen or non-frozen grapes. Cyclic procyanidins showed neither significant differences in concentration in must and wine due to any specific applied factor, nor due to specific treatments (such as with bentonites), proving again their applicability as markers for the grape variety in wine [3]. A substantial drop in peonidin-3-glu over the vinification (the main anthocyanin in Schiava cv. grapes) was studied in relation to the applied study factors. Grape freezing increased the extraction of peonidin-3-glu in the must, though the rate of its subsequent loss was faster than in wines from non-frozen grapes. Nonethe-less, peonidin-3-glucoside was still more concentrated in the wines from frozen grapes than in wines from non-frozen grapes up to wine bottling. The wines made from frozen grapes and without malolac-tic fermentation had the highest colorimetric parameters a* (green→red), ΔE* (difference in colour), C* (chromaticity), and ΔH* (difference in tone) colorimetric parameters. b* (blue→yellow) was highest in wines from frozen grapes, but regardless of the application or not of the malolactic fermentation.

 

1. C Dupas de Matos, A., Longo, E., et al. (2020). Foods, vol. 9(4), p. 499
2. Poggesi, S., Dupas de Matos, A., Longo, E., et al. (2021). Molecules, vol. 26(20), p. 6245
3. Longo, E., Rossetti, F., Jouin, A., et al. (2019). Food chemistry, vol. 299, p. 125125

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Edoardo Longo1,2,*,†, Aakriti Darnal1,2, Adriana Teresa Ceci1,2, Simone Poggesi1,2,3, Tanja Mimmo², Emanuele Boselli1,2

1. Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13/B, 39100 Bolzano (Italy)
2. Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy)
3. Food experience and sensory testing laboratory (Feast), Massey University, Private Bag 11222, Palmerston North 4410 (New Zealand)

Contact the author*

Keywords

Colour instability, Grape freezing, Chemical profile, Colorimetry

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

FLAVANOL COMPOSITION OF VARIETAL AND BLEND WINES MADE BEFORE AND AFTER FERMENTATION FROM SYRAH, MARSELAN AND TANNAT

Background: The Flavan-3-ol extraction from grape skin and seed during red-winemaking and their retention into wines depend on many factors, some of which are modified in the winemaking of blend wines. Recent research shows that Marselan, have grapes with high proportion of skins with high concentrations of flavanols, but produces red-wines with low proportion of skin derived flavanols, differently to the observed in Syrah or Tannat. But the factors explaining these differences are not yet understood.

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.