terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

Abstract

The effects of (A) grape freezing, and (B) malolactic fermentation, have been evaluated on the chemical and colorimetric profiles of red wines from Schiava grossa cv. grapes, thus prone to colour instability. The aim was to observe if specific variables (e.g. grape freezing) could improve the extraction and stability of pigments. The samples were studied from musts up to twelve months in bottle. The study was conducted with independent parallel micro-vinifications (12 = 4 theses x 3 replicates) under strictly-controlled conditions. The measured parameters included: 1) sugars, organic acids and %ABV (measured by specific enzymatic methods or by OIV reference methods), 2) dissolved oxygen (measured according to OIV protocols), 3) semi-quantitative determination of pigments, profile of non-anthocyanidin phenols, and profile of condensed tannins (LC-QqQ/MS [1]), spectrophotometric indexes (Hue and Intensity), colorimetric indexes (CIELab parameters), and the volatile profiles (GCxGC-ToF/MS [2]). A striking relation among the abundances of four anthocyanidin monoglucosides (peonidin-3-glu, malvidin-3-glu, petunidin-3-glu, and cyanidin-3-glu) has been observed in the musts from frozen grapes, but not in wines from frozen or non-frozen grapes. Cyclic procyanidins showed neither significant differences in concentration in must and wine due to any specific applied factor, nor due to specific treatments (such as with bentonites), proving again their applicability as markers for the grape variety in wine [3]. A substantial drop in peonidin-3-glu over the vinification (the main anthocyanin in Schiava cv. grapes) was studied in relation to the applied study factors. Grape freezing increased the extraction of peonidin-3-glu in the must, though the rate of its subsequent loss was faster than in wines from non-frozen grapes. Nonethe-less, peonidin-3-glucoside was still more concentrated in the wines from frozen grapes than in wines from non-frozen grapes up to wine bottling. The wines made from frozen grapes and without malolac-tic fermentation had the highest colorimetric parameters a* (green→red), ΔE* (difference in colour), C* (chromaticity), and ΔH* (difference in tone) colorimetric parameters. b* (blue→yellow) was highest in wines from frozen grapes, but regardless of the application or not of the malolactic fermentation.

 

1. C Dupas de Matos, A., Longo, E., et al. (2020). Foods, vol. 9(4), p. 499
2. Poggesi, S., Dupas de Matos, A., Longo, E., et al. (2021). Molecules, vol. 26(20), p. 6245
3. Longo, E., Rossetti, F., Jouin, A., et al. (2019). Food chemistry, vol. 299, p. 125125

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Edoardo Longo1,2,*,†, Aakriti Darnal1,2, Adriana Teresa Ceci1,2, Simone Poggesi1,2,3, Tanja Mimmo², Emanuele Boselli1,2

1. Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13/B, 39100 Bolzano (Italy)
2. Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy)
3. Food experience and sensory testing laboratory (Feast), Massey University, Private Bag 11222, Palmerston North 4410 (New Zealand)

Contact the author*

Keywords

Colour instability, Grape freezing, Chemical profile, Colorimetry

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.