GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Heat berry: the influence of abiotic factors on the composition of berries, must and wine in Vitis vinifera L. CV Riesling

Heat berry: the influence of abiotic factors on the composition of berries, must and wine in Vitis vinifera L. CV Riesling

Abstract

It has been known for a long time that altering microclimate affects fruit composition and wine quality. The research project Heat Berry focuses on future scenarios of the climate change regarding higher temperatures and the risk of increasing sun radiation to the fruit. Field experiments were conducted in 2015 and 2016 at an experimental site at Geisenheim (Germany) using Riesling (clone 198-25 grafted to rootstock SO4). The aim of this study was to investigate and separate the effect of higher temperature to the fruit and higher light exposure in the bunch zone. Therefore, an experimental setup was designed to increase temperature inside the bunch zone (up to max. 3 °C on average) as well as defoliation and shading to influence the light exposure of the bunches. In addition, some physiological parameters and maturity measurements (Brix, yeast available nitrogen, organic acids) were determined. Aroma measurements focused on monoterpenes, C13-Norisoprenoids and polyphenols in berries as well as in samples of small scale vinification. A special focus lies on the C13-norisoprenoid TDN (1, 1, 6-trimethyl-1, 2-dihydronaphthalene). It is mostly present in mellow, aging Riesling wines and associated with a petrol taint in the sensory perception. Whether the origin of TDN is connected to viticultural and abiotic factors like temperature or sun exposure will be discussed.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

BRANDT, Melanie (1); SCHEIDWEILER, Mathias (1); RAUHUT, Doris (2); PATZ, Claus-Dieter (3); ZORN, Holger (4); STOLL, Manfred (1)

(1) Hochschule Geisenheim University, Department of General & Organic Viticulture, Blaubachstraße 19, 65366 Geisenheim, Germany,
(2) Hochschule Geisenheim University, Department of Microbiology & Biochemistry, Von-Lade-Str. 1, 65366 Geisenheim, Germany
(3) Hochschule Geisenheim University, Department of Wine Analysis and Beverage Technology, Von-Lade-Str. 1, 65366 Geisenheim, Germany.
(4) Justus Liebig University Giessen, Institute of Food Chemistry and Food Biotechnology, Heinrich-Buff-Ring 58, 35392 Giessen, Germany

Contact the author

Keywords

 climate change, light exposure, Vitis vinifera, 1,1,6-trimethyl-1,2-dihydronaphthalene

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

VITIGEOSS Business Service: Task scheduling optimization in vineyards

Agriculture plantations are complex systems whose performance critically depends on the execution of several types of tasks with precise timing and efficiency to respond to different external factors. This is particularly true for orchards like vineyards, which need to be strictly monitored and regulated, as they are sensitive to diverse types of pests, and climate conditions. In these environments, managing and optimally scheduling the available work force and resources is not trivial and is usually done by teams of senior managers based on their experience. In this regard, having a baseline schedule could help them in the decision process and improve their results, in terms of time and resources spent.

Hyperspectral imaging for the appraisal of varietal aroma composition along maturation in intact Vitis vinifera L. Tempranillo Blanco berries

The knowledge of the grape aromatic composition during ripening provides very important information for winegrowers, who may carry out different viticultural practices, or determine the harvest date more accurately. However, there are currently no tools that allow this measurement to be carried out in a non-invasive and rapid way. For this reason, the aim of this work was to design a non-invasive methodology, based on hyperspectral imaging to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening.

Anthocyanin and trans-resveratrol accumulation is associated with abscisic acid and methyl jasmonicanthocyanin and trans-resveratrol accumulation is acid in berry skin of vitis vinifera L. Cvs. Malbec, Bonarda, Syrah, Cabernet sauvignon, and Pinot noir

Red grapes contain significant amounts of phenolic compounds, known to contribute to wine quality and to provide important health benefits. Berry skin phenolics can be elicited by plant hormones. The aim of this work was to increase the content of anthocyanins and trans-resveratrol in five red varieties cultured in Argentina: Malbec (M), Bonarda (B), Syrah (S), Cabernet Sauvignon (CS), and Pinot Noir (PN), in two different growing regions: Santa Rosa (SR) and Valle de Uco (VU), by applying a post-veraison hormonal treatment with abscisic acid (ABA) and methyl jasmonate (MeJA).

Manipulating grapevine bud fruitfulness

Bud fruitfulness is a key component of reproductive performance of grapevine. It plays a significant role in annual yield variation of vineyards as it is a prerequisite of crop production in the following season. Various exogenous and endogenous factors influencing the development of inflorescence primordia (IP) have been studied. However, the research on molecular genetic control of bud fruitfulness, especially how it interacts with environmental factors is still lacking. This study aims to investigate the molecular mechanism of effects of temperature and light on grapevine bud fruitfulness during initiation and differentiation of IP.

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].