GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Heat berry: the influence of abiotic factors on the composition of berries, must and wine in Vitis vinifera L. CV Riesling

Heat berry: the influence of abiotic factors on the composition of berries, must and wine in Vitis vinifera L. CV Riesling

Abstract

It has been known for a long time that altering microclimate affects fruit composition and wine quality. The research project Heat Berry focuses on future scenarios of the climate change regarding higher temperatures and the risk of increasing sun radiation to the fruit. Field experiments were conducted in 2015 and 2016 at an experimental site at Geisenheim (Germany) using Riesling (clone 198-25 grafted to rootstock SO4). The aim of this study was to investigate and separate the effect of higher temperature to the fruit and higher light exposure in the bunch zone. Therefore, an experimental setup was designed to increase temperature inside the bunch zone (up to max. 3 °C on average) as well as defoliation and shading to influence the light exposure of the bunches. In addition, some physiological parameters and maturity measurements (Brix, yeast available nitrogen, organic acids) were determined. Aroma measurements focused on monoterpenes, C13-Norisoprenoids and polyphenols in berries as well as in samples of small scale vinification. A special focus lies on the C13-norisoprenoid TDN (1, 1, 6-trimethyl-1, 2-dihydronaphthalene). It is mostly present in mellow, aging Riesling wines and associated with a petrol taint in the sensory perception. Whether the origin of TDN is connected to viticultural and abiotic factors like temperature or sun exposure will be discussed.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

BRANDT, Melanie (1); SCHEIDWEILER, Mathias (1); RAUHUT, Doris (2); PATZ, Claus-Dieter (3); ZORN, Holger (4); STOLL, Manfred (1)

(1) Hochschule Geisenheim University, Department of General & Organic Viticulture, Blaubachstraße 19, 65366 Geisenheim, Germany,
(2) Hochschule Geisenheim University, Department of Microbiology & Biochemistry, Von-Lade-Str. 1, 65366 Geisenheim, Germany
(3) Hochschule Geisenheim University, Department of Wine Analysis and Beverage Technology, Von-Lade-Str. 1, 65366 Geisenheim, Germany.
(4) Justus Liebig University Giessen, Institute of Food Chemistry and Food Biotechnology, Heinrich-Buff-Ring 58, 35392 Giessen, Germany

Contact the author

Keywords

 climate change, light exposure, Vitis vinifera, 1,1,6-trimethyl-1,2-dihydronaphthalene

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Monitoring water deficit in vineyards by means of Red and Infrared measurements

Vineyard water availability is one of the most important variables both in plant’s production and wine quality, once it regulates several processes, among which the stomata activity. To avoid water deficit, wine producers introduced artificial irrigation in their vineyard, using a semi-empirical process to calculate water amount.

Study of grape plant behaviour (cv. Chasselas) on various “terroirs” of the Vaud county (Switzerland)

L’étude du comportement physiologique et agronomique de la vigne (cv. Chasselas) a été réalisée en 2001 par la Station fédérale de recherches en production végétale de Changins sur divers terroirs viticoles vaudois (Suisse), dans le cadre d’un projet d’étude des terroirs viticoles vaudois en collaboration avec le bureau I LETESSIER (SIGALES) à Grenoble et l’École polytechnique fédérale de Lausanne (EPFL).

Microbial consortia as a tool for sustainable vineyard management: A study on their acceptance among Veneto region’s grape-growers

In recent years, sustainability has become a key focus in agriculture, including viticulture.

Exploring the potential of agrivoltaics in German vineyards: A GIS-based assessment

The growing demand for renewable energy and sustainable agricultural practices has highlighted the potential of agrivoltaics (Agri-PV) as a promising solution, particularly in the context of German viticulture.

Assessing bunch architecture for grapevine yield forecasting by image analysis

It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages. The accuracy of the method for predicting bunch weight at different phenological stages was assessed for seven different varieties.