GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Heat berry: the influence of abiotic factors on the composition of berries, must and wine in Vitis vinifera L. CV Riesling

Heat berry: the influence of abiotic factors on the composition of berries, must and wine in Vitis vinifera L. CV Riesling

Abstract

It has been known for a long time that altering microclimate affects fruit composition and wine quality. The research project Heat Berry focuses on future scenarios of the climate change regarding higher temperatures and the risk of increasing sun radiation to the fruit. Field experiments were conducted in 2015 and 2016 at an experimental site at Geisenheim (Germany) using Riesling (clone 198-25 grafted to rootstock SO4). The aim of this study was to investigate and separate the effect of higher temperature to the fruit and higher light exposure in the bunch zone. Therefore, an experimental setup was designed to increase temperature inside the bunch zone (up to max. 3 °C on average) as well as defoliation and shading to influence the light exposure of the bunches. In addition, some physiological parameters and maturity measurements (Brix, yeast available nitrogen, organic acids) were determined. Aroma measurements focused on monoterpenes, C13-Norisoprenoids and polyphenols in berries as well as in samples of small scale vinification. A special focus lies on the C13-norisoprenoid TDN (1, 1, 6-trimethyl-1, 2-dihydronaphthalene). It is mostly present in mellow, aging Riesling wines and associated with a petrol taint in the sensory perception. Whether the origin of TDN is connected to viticultural and abiotic factors like temperature or sun exposure will be discussed.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

BRANDT, Melanie (1); SCHEIDWEILER, Mathias (1); RAUHUT, Doris (2); PATZ, Claus-Dieter (3); ZORN, Holger (4); STOLL, Manfred (1)

(1) Hochschule Geisenheim University, Department of General & Organic Viticulture, Blaubachstraße 19, 65366 Geisenheim, Germany,
(2) Hochschule Geisenheim University, Department of Microbiology & Biochemistry, Von-Lade-Str. 1, 65366 Geisenheim, Germany
(3) Hochschule Geisenheim University, Department of Wine Analysis and Beverage Technology, Von-Lade-Str. 1, 65366 Geisenheim, Germany.
(4) Justus Liebig University Giessen, Institute of Food Chemistry and Food Biotechnology, Heinrich-Buff-Ring 58, 35392 Giessen, Germany

Contact the author

Keywords

 climate change, light exposure, Vitis vinifera, 1,1,6-trimethyl-1,2-dihydronaphthalene

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Aroma typicity of Timorasso wines: influence of ageing on volatile organic compounds and sensory descriptors

‘Timorasso’ is an autochthonous white grape variety from southern Piedmont (Italy) used for producing wines in the Colli Tortonesi product designation of origin (PDO). Over the last decade, there has been a notable rise in its production, due to the increased interest of wine enthusiasts who prized its wine distinctive ageing notes [1].

Epigenetics: an innovative lever for grapevine breeding in times of climate changes

Climate change results in erratic weather conditions, which may lead for many crops including grapevine, to a reduced production and products of lower quality. Concerning grapevine, climate change results in shorter growing seasons and dates for budbreak, flowering and fruit maturity occur earlier in many regions. It also leads to an increase of various pests and diseases, as well as the vectors responsible for disease distribution.

Vineyard Landscape in Vale dos Vinhedos: Pressure and Protection

The region with Origin Indication Vale dos Vinhedos (IPVV) is located in the cities of Bento Gonçalves, Garibaldi and Monte Belo do Sul. It was established in November 2002, through an act of Instituto Nacional de Propriedade Industrial, according to Resolução INPI Nº. 75, of 2000, and Law Nº. 9.279 of 1996. The changes on the grape growing and wine making in the last 15 years, with the expansion of grapevines Vitis viníferas cultivation, the installation of several modern family wine companies, making wine with competitive quality, among other aspects, have enabled the implementation of concepts of Geographical Indications.

Impact of glutathione and elemental sulphur juice addition on the volatile thiol production in South African Sauvignon blanc wine

Three compounds, 3-mercaptohexanol (3MH), 3-mercaptohexyl-acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP), also known as varietal thiols, have been identified to contribute positively to wine aroma and are responsible for the distinct gooseberry, grapefruit, guava and box tree character found in Sauvignon blanc wines. Certain volatile thiol compounds though, can cause off-aromas of onion, garlic, rubber and rotten egg, this group of molecules is known as reductive sulphur compounds (RSC). This study looks into how the addition of sulphur-compounds to Sauvignon blanc juice contributes to the varietal thiol (3MH and 3MHA) concentration and reductive sulphur compound concentration in South African Sauvignon blanc wine.

Monitoring of microbial biomass to characterise vineyard soils

Le sol est un facteur important permettant la croissance de la vigne. Les propriétés physiques et chimiques, mais aussi microbiologiques ont une influence sur beaucoup des fonctions du sol comme la structure, le drainage, la fertilité, déterminant la vigueur des plantes et le potentiel œnologique des raisins.