GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Heat berry: the influence of abiotic factors on the composition of berries, must and wine in Vitis vinifera L. CV Riesling

Heat berry: the influence of abiotic factors on the composition of berries, must and wine in Vitis vinifera L. CV Riesling

Abstract

It has been known for a long time that altering microclimate affects fruit composition and wine quality. The research project Heat Berry focuses on future scenarios of the climate change regarding higher temperatures and the risk of increasing sun radiation to the fruit. Field experiments were conducted in 2015 and 2016 at an experimental site at Geisenheim (Germany) using Riesling (clone 198-25 grafted to rootstock SO4). The aim of this study was to investigate and separate the effect of higher temperature to the fruit and higher light exposure in the bunch zone. Therefore, an experimental setup was designed to increase temperature inside the bunch zone (up to max. 3 °C on average) as well as defoliation and shading to influence the light exposure of the bunches. In addition, some physiological parameters and maturity measurements (Brix, yeast available nitrogen, organic acids) were determined. Aroma measurements focused on monoterpenes, C13-Norisoprenoids and polyphenols in berries as well as in samples of small scale vinification. A special focus lies on the C13-norisoprenoid TDN (1, 1, 6-trimethyl-1, 2-dihydronaphthalene). It is mostly present in mellow, aging Riesling wines and associated with a petrol taint in the sensory perception. Whether the origin of TDN is connected to viticultural and abiotic factors like temperature or sun exposure will be discussed.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

BRANDT, Melanie (1); SCHEIDWEILER, Mathias (1); RAUHUT, Doris (2); PATZ, Claus-Dieter (3); ZORN, Holger (4); STOLL, Manfred (1)

(1) Hochschule Geisenheim University, Department of General & Organic Viticulture, Blaubachstraße 19, 65366 Geisenheim, Germany,
(2) Hochschule Geisenheim University, Department of Microbiology & Biochemistry, Von-Lade-Str. 1, 65366 Geisenheim, Germany
(3) Hochschule Geisenheim University, Department of Wine Analysis and Beverage Technology, Von-Lade-Str. 1, 65366 Geisenheim, Germany.
(4) Justus Liebig University Giessen, Institute of Food Chemistry and Food Biotechnology, Heinrich-Buff-Ring 58, 35392 Giessen, Germany

Contact the author

Keywords

 climate change, light exposure, Vitis vinifera, 1,1,6-trimethyl-1,2-dihydronaphthalene

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Cultivation site effect on the quality of Moscato di Pantelleria

n 1997 and 1999, sixteen cultivation sites of cv. Muscat of Alexandria different for pedological conditions, altitude and exposition were selected through all Pantelleria isle. In 1997 in each site

«Observatoire Mourvèdre»: (2) climatic mapping for successful plantation of Cv. Mourvèdre

A statistical model of sugar potential for Mourvèdre grapevine cultivar has been obtained using a group of 32 plots all around de south-east french mediterranean area.

Strigolactones as possible elicitors in sunburn defense mechanisms in grapes: preliminary results

Due to altered climatic conditions, grape berry sunburn has become one of the main challenges in contemporary viticulture.

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).