terclim by ICS banner
IVES 9 IVES Conference Series 9 METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Abstract

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2. The aim of this study was therefore to progress in wines without added SO₂ specificities characterization, focusing on compounds involved in their particular aroma.

To identify these compounds, a sensory targeted approach using semi-preparative HPLC3 followed by GC-O and GC-MS characterization was applied. For that, the same wines than those used for previous sensory characterization were studied. These wines were produced in 2017 from same merlot grape batches, according to a standard winemaking process, with or without SO₂ addition. First of all, wine aroma extracts were fractionated by semi-preparative HPLC to identify fractions perceived differently between wines. After comparing the fractions of the wines with or without sulfites, three consecutive fractions have been selected for their olfactive difference between the wines. These fractions were then analyzed by GC-O and GC-MS. Methyl salicylate was identified as responsible for sensory differences observed between these fractions. This compound was quantified4 in a large set of commercial red wines. Methyl salicylate was present at higher concentrations in the wines without added SO₂ ranging from 6 to 105 µg/L whereas, in the wines with added SO₂, its concentration was below 10 µg/L. Sensory threshold of methyl salicylate was determined in red wines at 62.3 µg/L and one-quarter of the wines without sulfites studied, presented a concentration higher than this threshold.

Finally, methyl salicylate qualitative sensory impact was characterized in wines without added SO₂ by sensory profile determinations. This was done after a descriptor generation procedure and an adapted training on natural references associated to generated descriptors. This revealed that methyl salicylate was at the origin of wine without added SO₂ coolness and modified fruity aroma perception of these wines.

 

1. Pelonnier-Magimel, E., Mangiorou, P., Philippe, D., Revel, G. de, Jourdes, M., Marchal, A., Marchand, S., Pons, A., Riquier, L., Teissedre, P.-L., Thibon, C., Lytra, G., Tempère, S., & Barbe, J.-C. (2020). Sensory characterisation of Bordeaux red wines produced without added sulfites. OENO One, 54(4), Art. 4.
2. Pelonnier-Magimel, E., Windholtz, S., Pomarède, I. M., & Barbe, J.-C. (2020). Sensory characterisation of wines without added sulfites via specific and adapted sensory profile. OENO One, 54(4), Art. 4.
3. Pineau, B., Barbe, J.-C., Van Leeuwen, C., & Dubourdieu, D. (2009). Examples of perceptive interactions involved in specific “red-” and “black-berry” aromas in red wines. Journal of agricultural and food chemistry, 57(9), 3702-3708.
4. Poitou, X., Redon, P., Pons, A., Bruez, E., Delière, L., Marchal, A., Cholet, C., Geny-Denis, L., & Darriet, P. (2021). Methyl salicy-late, a grape and wine chemical marker and sensory contributor in wines elaborated from grapes affected or not by cryptogamic diseases. Food Chemistry, 360, 130120.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Edouard Pelonnier-Magimel1,2, Georgia Lytra1,2, Céline Franc1,2, Laura Farris1,2, Philippe Darriet1,2, Jean-Christophe Barbe1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

Contact the author*

Keywords

Wines without added sulfites, Methyl salicylate, Sensory analysis, GC-O

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

The effects of (A) grape freezing, and (B) malolactic fermentation, have been evaluated on the chemical and colorimetric profiles of red wines from Schiava grossa cv. grapes, thus prone to colour instability. The aim was to observe if specific variables (e.g. grape freezing) could improve the extraction and stability of pigments. The samples were studied from musts up to twelve months in bottle. The study was conducted with independent parallel micro-vinifications (12 = 4 theses x 3 replicates) under strictly-controlled conditions.

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile.

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification
of the sensory balance and the development for example of cooked fruit aromas.