terclim by ICS banner
IVES 9 IVES Conference Series 9 2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Abstract

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest. The study aimed to evaluate the volatile chemical and sensory composition of two different blends, one “traditional” (70% Corvina, 30% Rondinella) and an “experimental” (60% Corvinone, 20% Corvina, 20% Rondinella).The grapes were supplied by four wineries in Valpolicella, which provided both blends.Winemaking was performed under standardized conditions . Free volatile compounds as well as those obtained through hydrolysis of glycosidic precursors were analysed with gas chromatography mass spectrometry (GC-MS) coupled with SPE and SPME extractions. Fermentation kinetics were found to be influenced by the different composition of the blends. The wines of traditional blends were found to be richer in free terpenes, ethyl acetate, benzyl alcohol while the wines of experimental blends were found to be richer in esters, beta damascenone, methyl salicylate and 1-Pentanol.Furthermore, the wines of experimental blends were characterized by a higher content of anthocyanins in both vintages.In conclusion, this study has highlighted the potential of the different blends studied to produce wines with specific and different aromatic profiles.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Giacomo Cristanelli¹, Giovanni Luzzini¹, Davide Slaghenaufi¹, Maurizio Ugliano¹

1. Department of Biotechnology, University of Verona, Italy

Contact the author*

Keywords

Red wine,Valpolicella wine, Aroma, GC-Ms

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

A wide range of olfactory descriptors ranging from fresh and jammy fruit notes to cooked and oxidized fruit notes could describe the fruity aroma of red wines [1]. The fruity character of a wine is mainly related to the grape variety selected, to the terroir and the vinification process applied for its conception. In white wines, some volatile compounds confer directly their aroma to the wine while the question of “key” compound is more complex in red wines. According to many studies performed over the past decades, some fruity ethyl esters are directly involved in the fruity perception of red wines while others, present at subthreshold concentrations, participate indirectly to the fruity expression via perceptive interactions [2].

SENSORY EVALUATION OF WINE AROMA: SHOULD COLOR-DRIVEN DESCRIPTORS BE USED?

The vocabulary used to describe wine aroma is commonly organized according to color, raising the question of whether they reflect the reality of olfactory perception. Previous studies have assumed this convention of color-aroma matching, and have investigated color’s influence on the perception of aroma only in dyed white wine or in red wine from particular places of origin. Here 48 white and red varietal wines from around the world were evaluated in black glasses then in clear glasses by a panel of wine experts, who gave intensity ratings for aroma attributes commonly used by wine professionals. In black glasses, aromas conventionally associated with white wine were perceived in the red wines, and vice versa.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].