terclim by ICS banner
IVES 9 IVES Conference Series 9 ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Abstract

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used. Total anthocyanins were determined. Malvidin-3-O-coumaroylglucoside was quantified by HPLC. Metabisulfite bleaching and the viscosity of the extracts were also determined. The highest extraction was obtained for the methanol/water system.The eutectic system that showed the highest extraction was the mixture of choline chloride, urea, and glycerol in a molar ratio of 1:1:1. Glycerol is classified as a polyol. It can modify the polarity of water so it can be used as a co-solvent in the extraction of polyphenols. In addition, it is considered a highly flexible molecule, capable of forming intra- and intermolecular hydrogen bonds [1]. The higher extraction of choline chloride glycerol and urea (molar ratio 1:1:1) could be due to the influence of the lower polarity of glycerol presenting a higher affinity, probably with malvidin-3-O-coumaroylglucoside, which is less polar than Mv-3-O-glc. In HPLC analysis, malvidin-3-O-coumaroylglucoside was the main anthocyanin identified in all extracts.In eutectic mixtures, viscosity is the property that limits the extraction process compared to conventional solvent extractions. The extract obtained with the choline chloride: urea: glycerol (1:2:2) system had the lowest viscosity values, while the rest of the extracts presented higher viscosities. Viscosity reflects how compact a molecular structure is. Therefore, it can be inferred that the systems with malic acid and citric acid with choline chloride in molar ratios 1:2 present a compact molecular structure with a minimum of holes, which results in less diffusion during the extraction process. The choline chloride: malic acid (1:1) system presented significant resistance to sulfite bleaching at pH 3.5, losing approximately 34 % of color. The choline chloride: urea: glycerol (1:1:1) system lost approximately 50 % of the color, presenting a lower resistance to discoloration.

1. A. P. Abbott, R. C. Harris, K. S. Ryder, C. D’Agostino, L. F. Gladden, and M. D. Mantle, “Glycerol eutectics as sustainable solvent systems,” Green Chem., vol. 13, no. 1, pp. 82–90, 2011

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Lilisbet Castellanos-Gallo¹, Lourdes Ballinas-Casarrubias¹, Jose-Carlos Espinoza-Hicks¹,  Johan Mendo-Za-Chacón¹, León Hernandez-Ochoa¹

1. Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Ciudad Universitaria s/n, C.P. 31170 Chihuahua Mexico

Contact the author*

Keywords

Extraction, malvidin-3-O-coumaroylglucoside, Eutectic solvents, Grape pomace

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

THE EFFECT OF BENTONITE FINING ON THE VOLATILE AND NON-VOLATILE PROFILE OF ITALIAN WHITE WINES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines. Macerations were of 7 days, except in the extended macerations that were of 15 days.

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

HOW TO EVALUATE THE QUALITY OF NATURAL WINES?

The movement of Natural wines has clearly increased in the last few years, to reach a high demand from consumers nowadays. Switzerland has not been left out of this movement and has created a dedicated association in 2021. This association has the ambition to develop a specific tasting sheet for natural wines. The study of the tasting notes shows that the olfactory description of wines is recent but predominant today. But wine is a product makes to be drunk and not (just) to smell it. Based on these findings, a new 100-point tasting sheet has been developed. The main characteristics are 1) an evaluation in the mouth before the description of the olfaction, 2) to give 50% of the points on the judgment for the mouth characteristics, 3) to pejorate the visual aspects only if the wine is judged as “not drinkable” and 4) to express personal emotions.