terclim by ICS banner
IVES 9 IVES Conference Series 9 ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Abstract

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used. Total anthocyanins were determined. Malvidin-3-O-coumaroylglucoside was quantified by HPLC. Metabisulfite bleaching and the viscosity of the extracts were also determined. The highest extraction was obtained for the methanol/water system.The eutectic system that showed the highest extraction was the mixture of choline chloride, urea, and glycerol in a molar ratio of 1:1:1. Glycerol is classified as a polyol. It can modify the polarity of water so it can be used as a co-solvent in the extraction of polyphenols. In addition, it is considered a highly flexible molecule, capable of forming intra- and intermolecular hydrogen bonds [1]. The higher extraction of choline chloride glycerol and urea (molar ratio 1:1:1) could be due to the influence of the lower polarity of glycerol presenting a higher affinity, probably with malvidin-3-O-coumaroylglucoside, which is less polar than Mv-3-O-glc. In HPLC analysis, malvidin-3-O-coumaroylglucoside was the main anthocyanin identified in all extracts.In eutectic mixtures, viscosity is the property that limits the extraction process compared to conventional solvent extractions. The extract obtained with the choline chloride: urea: glycerol (1:2:2) system had the lowest viscosity values, while the rest of the extracts presented higher viscosities. Viscosity reflects how compact a molecular structure is. Therefore, it can be inferred that the systems with malic acid and citric acid with choline chloride in molar ratios 1:2 present a compact molecular structure with a minimum of holes, which results in less diffusion during the extraction process. The choline chloride: malic acid (1:1) system presented significant resistance to sulfite bleaching at pH 3.5, losing approximately 34 % of color. The choline chloride: urea: glycerol (1:1:1) system lost approximately 50 % of the color, presenting a lower resistance to discoloration.

1. A. P. Abbott, R. C. Harris, K. S. Ryder, C. D’Agostino, L. F. Gladden, and M. D. Mantle, “Glycerol eutectics as sustainable solvent systems,” Green Chem., vol. 13, no. 1, pp. 82–90, 2011

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Lilisbet Castellanos-Gallo¹, Lourdes Ballinas-Casarrubias¹, Jose-Carlos Espinoza-Hicks¹,  Johan Mendo-Za-Chacón¹, León Hernandez-Ochoa¹

1. Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Ciudad Universitaria s/n, C.P. 31170 Chihuahua Mexico

Contact the author*

Keywords

Extraction, malvidin-3-O-coumaroylglucoside, Eutectic solvents, Grape pomace

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.