terclim by ICS banner
IVES 9 IVES Conference Series 9 ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Abstract

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used. Total anthocyanins were determined. Malvidin-3-O-coumaroylglucoside was quantified by HPLC. Metabisulfite bleaching and the viscosity of the extracts were also determined. The highest extraction was obtained for the methanol/water system.The eutectic system that showed the highest extraction was the mixture of choline chloride, urea, and glycerol in a molar ratio of 1:1:1. Glycerol is classified as a polyol. It can modify the polarity of water so it can be used as a co-solvent in the extraction of polyphenols. In addition, it is considered a highly flexible molecule, capable of forming intra- and intermolecular hydrogen bonds [1]. The higher extraction of choline chloride glycerol and urea (molar ratio 1:1:1) could be due to the influence of the lower polarity of glycerol presenting a higher affinity, probably with malvidin-3-O-coumaroylglucoside, which is less polar than Mv-3-O-glc. In HPLC analysis, malvidin-3-O-coumaroylglucoside was the main anthocyanin identified in all extracts.In eutectic mixtures, viscosity is the property that limits the extraction process compared to conventional solvent extractions. The extract obtained with the choline chloride: urea: glycerol (1:2:2) system had the lowest viscosity values, while the rest of the extracts presented higher viscosities. Viscosity reflects how compact a molecular structure is. Therefore, it can be inferred that the systems with malic acid and citric acid with choline chloride in molar ratios 1:2 present a compact molecular structure with a minimum of holes, which results in less diffusion during the extraction process. The choline chloride: malic acid (1:1) system presented significant resistance to sulfite bleaching at pH 3.5, losing approximately 34 % of color. The choline chloride: urea: glycerol (1:1:1) system lost approximately 50 % of the color, presenting a lower resistance to discoloration.

1. A. P. Abbott, R. C. Harris, K. S. Ryder, C. D’Agostino, L. F. Gladden, and M. D. Mantle, “Glycerol eutectics as sustainable solvent systems,” Green Chem., vol. 13, no. 1, pp. 82–90, 2011

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Lilisbet Castellanos-Gallo¹, Lourdes Ballinas-Casarrubias¹, Jose-Carlos Espinoza-Hicks¹,  Johan Mendo-Za-Chacón¹, León Hernandez-Ochoa¹

1. Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Ciudad Universitaria s/n, C.P. 31170 Chihuahua Mexico

Contact the author*

Keywords

Extraction, malvidin-3-O-coumaroylglucoside, Eutectic solvents, Grape pomace

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

Champagne wines are produced via a two-step process: the first is an initial alcoholic fermentation of grape must that produces a still base wine, followed by a second fermentation in bottle – the prise de mousse – that produces the effervescence. This appellation produces non-vintage sparkling wines composed of still base wines assembled from different vintages, varieties, and regions. These base wines, or “reserve wines,” are typically conserved on their fine lies and used to compensate for quality variance between vintages (1). Continuously blending small amounts of these reserve wines into newer ones also facilitates preserving the producer’s “house style.”

SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

In order to attenuate the effects of climate change on the ability to cultivate quality wine grape vines in Australia, it is essential to adapt to the projected less favourable Australian climate scenarios. One response may be to convert a portion of the current grapevine plantings to those varieties that demand less water and can tolerate increased heat. This investigation aimed to (i) generate sensory profiles and (ii) obtain knowledge about Australian wine consumers’ preferences and opinions of Australian wines made from potentially drought tolerant, white wine grape varieties not traditionally cultivated in Australia. A Rate-All-That-Apply (RATA) sensory panel (n = 49) generated sensory profiles of 44 commercial white wines made from 7 different white grape varieties (Arinto, Fiano, Garganega, Greco, Verdejo, Verdelho and Vermentino), plus two benchmark examples each of an Australian Riesling, Pinot Gris and Chardonnay wine.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.