terclim by ICS banner
IVES 9 IVES Conference Series 9 ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Abstract

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used. Total anthocyanins were determined. Malvidin-3-O-coumaroylglucoside was quantified by HPLC. Metabisulfite bleaching and the viscosity of the extracts were also determined. The highest extraction was obtained for the methanol/water system.The eutectic system that showed the highest extraction was the mixture of choline chloride, urea, and glycerol in a molar ratio of 1:1:1. Glycerol is classified as a polyol. It can modify the polarity of water so it can be used as a co-solvent in the extraction of polyphenols. In addition, it is considered a highly flexible molecule, capable of forming intra- and intermolecular hydrogen bonds [1]. The higher extraction of choline chloride glycerol and urea (molar ratio 1:1:1) could be due to the influence of the lower polarity of glycerol presenting a higher affinity, probably with malvidin-3-O-coumaroylglucoside, which is less polar than Mv-3-O-glc. In HPLC analysis, malvidin-3-O-coumaroylglucoside was the main anthocyanin identified in all extracts.In eutectic mixtures, viscosity is the property that limits the extraction process compared to conventional solvent extractions. The extract obtained with the choline chloride: urea: glycerol (1:2:2) system had the lowest viscosity values, while the rest of the extracts presented higher viscosities. Viscosity reflects how compact a molecular structure is. Therefore, it can be inferred that the systems with malic acid and citric acid with choline chloride in molar ratios 1:2 present a compact molecular structure with a minimum of holes, which results in less diffusion during the extraction process. The choline chloride: malic acid (1:1) system presented significant resistance to sulfite bleaching at pH 3.5, losing approximately 34 % of color. The choline chloride: urea: glycerol (1:1:1) system lost approximately 50 % of the color, presenting a lower resistance to discoloration.

1. A. P. Abbott, R. C. Harris, K. S. Ryder, C. D’Agostino, L. F. Gladden, and M. D. Mantle, “Glycerol eutectics as sustainable solvent systems,” Green Chem., vol. 13, no. 1, pp. 82–90, 2011

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Lilisbet Castellanos-Gallo¹, Lourdes Ballinas-Casarrubias¹, Jose-Carlos Espinoza-Hicks¹,  Johan Mendo-Za-Chacón¹, León Hernandez-Ochoa¹

1. Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Ciudad Universitaria s/n, C.P. 31170 Chihuahua Mexico

Contact the author*

Keywords

Extraction, malvidin-3-O-coumaroylglucoside, Eutectic solvents, Grape pomace

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.