terclim by ICS banner
IVES 9 IVES Conference Series 9 ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Abstract

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used. Total anthocyanins were determined. Malvidin-3-O-coumaroylglucoside was quantified by HPLC. Metabisulfite bleaching and the viscosity of the extracts were also determined. The highest extraction was obtained for the methanol/water system.The eutectic system that showed the highest extraction was the mixture of choline chloride, urea, and glycerol in a molar ratio of 1:1:1. Glycerol is classified as a polyol. It can modify the polarity of water so it can be used as a co-solvent in the extraction of polyphenols. In addition, it is considered a highly flexible molecule, capable of forming intra- and intermolecular hydrogen bonds [1]. The higher extraction of choline chloride glycerol and urea (molar ratio 1:1:1) could be due to the influence of the lower polarity of glycerol presenting a higher affinity, probably with malvidin-3-O-coumaroylglucoside, which is less polar than Mv-3-O-glc. In HPLC analysis, malvidin-3-O-coumaroylglucoside was the main anthocyanin identified in all extracts.In eutectic mixtures, viscosity is the property that limits the extraction process compared to conventional solvent extractions. The extract obtained with the choline chloride: urea: glycerol (1:2:2) system had the lowest viscosity values, while the rest of the extracts presented higher viscosities. Viscosity reflects how compact a molecular structure is. Therefore, it can be inferred that the systems with malic acid and citric acid with choline chloride in molar ratios 1:2 present a compact molecular structure with a minimum of holes, which results in less diffusion during the extraction process. The choline chloride: malic acid (1:1) system presented significant resistance to sulfite bleaching at pH 3.5, losing approximately 34 % of color. The choline chloride: urea: glycerol (1:1:1) system lost approximately 50 % of the color, presenting a lower resistance to discoloration.

1. A. P. Abbott, R. C. Harris, K. S. Ryder, C. D’Agostino, L. F. Gladden, and M. D. Mantle, “Glycerol eutectics as sustainable solvent systems,” Green Chem., vol. 13, no. 1, pp. 82–90, 2011

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Lilisbet Castellanos-Gallo¹, Lourdes Ballinas-Casarrubias¹, Jose-Carlos Espinoza-Hicks¹,  Johan Mendo-Za-Chacón¹, León Hernandez-Ochoa¹

1. Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Ciudad Universitaria s/n, C.P. 31170 Chihuahua Mexico

Contact the author*

Keywords

Extraction, malvidin-3-O-coumaroylglucoside, Eutectic solvents, Grape pomace

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fun-gicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms.

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.

IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

Brettanomyces bruxellensis is an ubiquitous yeast associated with different fermentation media such as beer and kombucha, where its presence is beneficial to bring an aromatic typicity. However, it is a main spoilage yeast in wines, in which it produces volatile phenols responsible for organoleptic deviations causing significant economic losses (Chatonnet et al., 1992). Cellar and winery equipment’s are considered as the first source of contamination, during fermentation and wine ageing process (Connel et al., 2002). Indeed, it is possible to find B. bruxellensis in the air, on walls and floors of the cellars, on small materials, vats and barrels.