terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Abstract

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

The aim of this work is to study the effect of different viticultural practices, such as traditional cultivation, organic cultivation and the use of natural fertilizer on the phenolic composition of grapes. In addition, the effect on wine phenolic composition of using tanks made of different materials (stainless steel tanks, oak wood barrels/tanks or earthenware vats) at different stages of winemaking and aging was evaluated over three vintages. The detailed phenolic composition of grapes and wines was determined by HPLC-DAD-MS [2].

Results obtained showed that the use of natural fertilizer did not cause significant differences in the pigment composition of grapes. However, a combination of organic cultivation with natural fertilizer significantly increased the total content of pigments and flavanols when compared to traditional cultivation with no fertilization. Regarding wines, higher levels of total flavanols and anthocyanins were observed when alcoholic fermentation (AF) was carried out in stainless steel tanks than when wines were fermented in earthenware vats. In the first ones (AF in stainless steel tanks), the type of container (oak barrels or earthenware) employed for the subsequent malolactic fermentation (MLF) did not have a significant influence in their phenolic composition. However, higher levels of phenolic compounds were observed in wines with AF made in stainless steel tanks and MLF in earthenware vats than in wines in which both fermentation processes occurred in earthenware vats. The obtained results showed that the type of tank as well as the stage at which it is used might have a significant influence on the phenolic composition of the wines. This could allow envisaging the most adequate tanks for each step of winemaking and aging in order to obtain wines with an adequate phenolic composition.

 

1. Mira de Orduña, R. 2017. Food Research International, 43, 1844-1855
2. García-Estévez, I., et al. 2017. J. Agric. Food Chem., 65, 6359 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Rebeca Ferreras Charro1

1. Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Salamanca, E37007, Spain

Contact the author*

Keywords

red wine, phenolic compounds, earthenware vats, HPLC-DAD-MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.

SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

Cognac is an outstanding french wine spirit appreciated around the world and produced exclusively in the Nouvelle-Aquitaine region, and more precisely in the Cognac area. According to AOC regulations (Appellation D’origine Controlée), the spirit required at least 2 years of continuous ageing in oak barrels to be granted the title of Cognac. The oak wood will import color, structure and organoleptic complexity. The different steps during barrel-making process, such as seasoning and toasting, influence the above quality attributes in both wines and spirits.

VOLATILE COMPOUNDS AND SENSORY PROFILE OF NEBBIOLO RED WINES TREATED WITH WOOD FORMATS ALTERNATIVE TO BARRELS

In winemaking, the use of wood products alternative to barrels, has become a useful tool for the achievement of numerous oenological objectives, including the fast release of desirable volatile and polyphenolic compounds, colour stabilization, and important economic advantages if compared to the traditional barrel production. Among a huge array of variables, the wood format, the vinification protocol, especially the moment of the infusion of the woods and the exposed surface area of the alternative woods are of relevant significance, since they may influence the speed and intensity of the aroma transfer from the wood to the wine defining different sensory profiles.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.