terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Abstract

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

The aim of this work is to study the effect of different viticultural practices, such as traditional cultivation, organic cultivation and the use of natural fertilizer on the phenolic composition of grapes. In addition, the effect on wine phenolic composition of using tanks made of different materials (stainless steel tanks, oak wood barrels/tanks or earthenware vats) at different stages of winemaking and aging was evaluated over three vintages. The detailed phenolic composition of grapes and wines was determined by HPLC-DAD-MS [2].

Results obtained showed that the use of natural fertilizer did not cause significant differences in the pigment composition of grapes. However, a combination of organic cultivation with natural fertilizer significantly increased the total content of pigments and flavanols when compared to traditional cultivation with no fertilization. Regarding wines, higher levels of total flavanols and anthocyanins were observed when alcoholic fermentation (AF) was carried out in stainless steel tanks than when wines were fermented in earthenware vats. In the first ones (AF in stainless steel tanks), the type of container (oak barrels or earthenware) employed for the subsequent malolactic fermentation (MLF) did not have a significant influence in their phenolic composition. However, higher levels of phenolic compounds were observed in wines with AF made in stainless steel tanks and MLF in earthenware vats than in wines in which both fermentation processes occurred in earthenware vats. The obtained results showed that the type of tank as well as the stage at which it is used might have a significant influence on the phenolic composition of the wines. This could allow envisaging the most adequate tanks for each step of winemaking and aging in order to obtain wines with an adequate phenolic composition.

 

1. Mira de Orduña, R. 2017. Food Research International, 43, 1844-1855
2. García-Estévez, I., et al. 2017. J. Agric. Food Chem., 65, 6359 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Rebeca Ferreras Charro1

1. Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Salamanca, E37007, Spain

Contact the author*

Keywords

red wine, phenolic compounds, earthenware vats, HPLC-DAD-MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

ASSESSMENT OF ‘DOLCETTO’ GRAPES AND WINES FROM DIFFERENT AREAS OF OVADA DOCG

Dolcetto (Vitis vinifera L.) is one of the traditionally cultivated varieties in Piedmont (north-east Italy). Dolcetto wines have long been associated with local consumption and they are little known internationally. In particular, the Ovada area (south-east Piedmont), even if it represents a small share of the regional PDO Dolcetto production, is one of the oldest and vocated territory, giving wine also suitable for aging. In this study, the basic composition and phenolic content of Dolcetto grapes for Ovada DOCG wines have been investigated in three different vintages (2020-2022), as well as the main aspects of the derived commercial and experimental wines (basic parameters, phenolics, volatile compounds, sensory properties).

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.