terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Abstract

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

The aim of this work is to study the effect of different viticultural practices, such as traditional cultivation, organic cultivation and the use of natural fertilizer on the phenolic composition of grapes. In addition, the effect on wine phenolic composition of using tanks made of different materials (stainless steel tanks, oak wood barrels/tanks or earthenware vats) at different stages of winemaking and aging was evaluated over three vintages. The detailed phenolic composition of grapes and wines was determined by HPLC-DAD-MS [2].

Results obtained showed that the use of natural fertilizer did not cause significant differences in the pigment composition of grapes. However, a combination of organic cultivation with natural fertilizer significantly increased the total content of pigments and flavanols when compared to traditional cultivation with no fertilization. Regarding wines, higher levels of total flavanols and anthocyanins were observed when alcoholic fermentation (AF) was carried out in stainless steel tanks than when wines were fermented in earthenware vats. In the first ones (AF in stainless steel tanks), the type of container (oak barrels or earthenware) employed for the subsequent malolactic fermentation (MLF) did not have a significant influence in their phenolic composition. However, higher levels of phenolic compounds were observed in wines with AF made in stainless steel tanks and MLF in earthenware vats than in wines in which both fermentation processes occurred in earthenware vats. The obtained results showed that the type of tank as well as the stage at which it is used might have a significant influence on the phenolic composition of the wines. This could allow envisaging the most adequate tanks for each step of winemaking and aging in order to obtain wines with an adequate phenolic composition.

 

1. Mira de Orduña, R. 2017. Food Research International, 43, 1844-1855
2. García-Estévez, I., et al. 2017. J. Agric. Food Chem., 65, 6359 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Rebeca Ferreras Charro1

1. Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Salamanca, E37007, Spain

Contact the author*

Keywords

red wine, phenolic compounds, earthenware vats, HPLC-DAD-MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

Metabolomics for grape and wine research: exploring the contributions of amino acids to wine flavour

A critical aspect of wine quality is the overall expression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components.
Grapes directly contribute to wine only a small number of potent aroma compounds, and the unique
sensory attributes and perceived quality of a wine result from combining 100s of metabolites of grapes, yeast and bacteria, and oak wood.

ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

The balance between the different flavours of a wine largely determines its perception and appreciation by the consumers. In white wines, sweetness and sourness are usually the two poles balancing the taste properties. The bitter flavour, on the other hand, is frequently associated with a loss of equilibrium and all white wines (dry and sweet, young and aged) are affected.
Several bitter compounds are already well-described in wines.

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.