terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Abstract

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

The aim of this work is to study the effect of different viticultural practices, such as traditional cultivation, organic cultivation and the use of natural fertilizer on the phenolic composition of grapes. In addition, the effect on wine phenolic composition of using tanks made of different materials (stainless steel tanks, oak wood barrels/tanks or earthenware vats) at different stages of winemaking and aging was evaluated over three vintages. The detailed phenolic composition of grapes and wines was determined by HPLC-DAD-MS [2].

Results obtained showed that the use of natural fertilizer did not cause significant differences in the pigment composition of grapes. However, a combination of organic cultivation with natural fertilizer significantly increased the total content of pigments and flavanols when compared to traditional cultivation with no fertilization. Regarding wines, higher levels of total flavanols and anthocyanins were observed when alcoholic fermentation (AF) was carried out in stainless steel tanks than when wines were fermented in earthenware vats. In the first ones (AF in stainless steel tanks), the type of container (oak barrels or earthenware) employed for the subsequent malolactic fermentation (MLF) did not have a significant influence in their phenolic composition. However, higher levels of phenolic compounds were observed in wines with AF made in stainless steel tanks and MLF in earthenware vats than in wines in which both fermentation processes occurred in earthenware vats. The obtained results showed that the type of tank as well as the stage at which it is used might have a significant influence on the phenolic composition of the wines. This could allow envisaging the most adequate tanks for each step of winemaking and aging in order to obtain wines with an adequate phenolic composition.

 

1. Mira de Orduña, R. 2017. Food Research International, 43, 1844-1855
2. García-Estévez, I., et al. 2017. J. Agric. Food Chem., 65, 6359 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Rebeca Ferreras Charro1

1. Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Salamanca, E37007, Spain

Contact the author*

Keywords

red wine, phenolic compounds, earthenware vats, HPLC-DAD-MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FERMENTATION POTENTIAL OF INDIGENOUS NON-SACCHAROMYCES YEASTS ISOLATED FROM MARAŠTINA GRAPES OF CROATIAN VINEYARDS

The interest in indigenous non-Saccharomyces yeast for use in wine production has increased in recent years because they contribute to the complex character of the wine. The aim of this work was to investigate the fermentation products of ten indigenous strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes, belonging to Hypopichia pseudoburtonii, Metschnikowia pulcherrima, Metschnikowia sinensis, Metschnikowia chrysoperlae, Lachancea thermotolerans, Pichia kluyveri, Hanseniaspora uvarum, Hanseniaspora guillermondii, Hanseniaspora pseudoguillermondii, and Starmerella apicola species, and compare it with commercial non-Saccharomyces and Saccharomyces strains.

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be defined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates.

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.

THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

Wine flavanols are extracted from grape skin and seeds along red winemaking. Potentially, eight flavan-3-ol subunits may be present as monomers or as tannins constituents, being these catechin, epicathechin, gallocatechin, epigallocatechin end the gallates of the mentioned units. In this work the flavanol profiles of grape skins and seeds before (grapes) and after (pomace) red winemaking were studied together with the one in the corresponding wines. The trials were made over two vintages in Vitis vinifera cv. Tannat, Syrah and Marselan from Uruguay.