terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Abstract

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

The aim of this research was to assess the impact of vine defoliation on free and glycosylated VOCs (Volatile Organic Compounds) of two Italian red grapes: Nebbiolo (neutral) and Aleatico (semi-aromatic). Defoliation was performed at fruit set phenological stage for Aleatico grapevines, and for Nebbiolo also at berries touch.

Solid Phase Extraction/Gas Chromatography–Mass Spectrometry (SPE/GC-MS) was carried out to ana-lyse free and glycoconjugates VOCs isolated from skins and pulps as separate portions of the berries [2].

The results showed that defoliation had an almost negligible effect on free and glycosylated volatiles of Aleatico grapes, thus suggesting that defoliation at fruit set did not change the volatile composition of this grape variety. A different behaviour was observed for Nebbiolo grapes, on both free and bound VOCs, with a greater impact on the first. Indeed, all the 30 free VOCs identified were significantly (ANOVA; p<0.05) affected by defoliation and by the time at which it was carried out, with a greater influence on the skin components. Early defoliation at fruit set did not favour the accumulation of free VOCs in Nebbiolo skins, significantly reducing the content of several VOCs, such as n-butyl acetate, terpenes (α-terpineol, and nerol) and aldehydes (hexanal, and 2-hexanal). On the other hand, late defoliation performed at berries touch, reduced n-butyl acetate, but increased alcohols content (i.e., 3-methyl-1-butanol, 1-pentanol, 2-ethyl-1-hexanol, benzyl and phenylethyl alcohols), nerol, aldehydes (i.e., 2-hexanal), and vanillin.

Results suggest that the effects of defoliation at fruit set on the VOCs pattern is cultivar dependent and almost ineffective on Aleatico grapes. Moreover, early defoliation at fruit-set seems stressful for Neb-biolo grapes and its odorous and potentially secondary metabolites. These results can be useful to improve canopy and winemaking precision practices.

 

1. Poni et al., 2006. DOI: 10.5344/ajev.2006.57.4.397
2. Piombino et al., 2022. DOI: 10.1111/ajgw.12521

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Paola Piombino¹, Elisabetta Pittari¹, Alessandro Genovese², Andrea Bellincontro³, Osvaldo Failla⁴, Luigi Moio1, Fabio Mencarelli⁵

1. Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Avellino 83100, Italy
2. Department of Agricultural Sciences, Division of Food Science and Technology, University of Naples Federico II, Portici (NA), 80055, Italy
3. DIBAF, University of Tuscia, Via De Lellis, 01100 Viterbo, Italy
4. Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
5. Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy

Contact the author*

Keywords

defoliation, secondary metabolites, aromas

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured.

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.

MICROFLUIDIC PLATFORM FOR SORTING YEAST CELLS ACCORDING TO THEIR MORPHOLOGY

In this work we briefly present a microfluidic device aiming to sort yeast cells according to their morphology. The technology is based upon microfluidic chips made out of Polydimethylsiloxane and glass using soft lithography processes and replica molding. The microfluidic device was used for encapsulating single yeast cells in liquid droplets containing growth medium. Liquid droplet containing yeast cells were sorted using a real time imaging and decision-making process.

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elabo- ration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.
The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration.