terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Abstract

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

The aim of this research was to assess the impact of vine defoliation on free and glycosylated VOCs (Volatile Organic Compounds) of two Italian red grapes: Nebbiolo (neutral) and Aleatico (semi-aromatic). Defoliation was performed at fruit set phenological stage for Aleatico grapevines, and for Nebbiolo also at berries touch.

Solid Phase Extraction/Gas Chromatography–Mass Spectrometry (SPE/GC-MS) was carried out to ana-lyse free and glycoconjugates VOCs isolated from skins and pulps as separate portions of the berries [2].

The results showed that defoliation had an almost negligible effect on free and glycosylated volatiles of Aleatico grapes, thus suggesting that defoliation at fruit set did not change the volatile composition of this grape variety. A different behaviour was observed for Nebbiolo grapes, on both free and bound VOCs, with a greater impact on the first. Indeed, all the 30 free VOCs identified were significantly (ANOVA; p<0.05) affected by defoliation and by the time at which it was carried out, with a greater influence on the skin components. Early defoliation at fruit set did not favour the accumulation of free VOCs in Nebbiolo skins, significantly reducing the content of several VOCs, such as n-butyl acetate, terpenes (α-terpineol, and nerol) and aldehydes (hexanal, and 2-hexanal). On the other hand, late defoliation performed at berries touch, reduced n-butyl acetate, but increased alcohols content (i.e., 3-methyl-1-butanol, 1-pentanol, 2-ethyl-1-hexanol, benzyl and phenylethyl alcohols), nerol, aldehydes (i.e., 2-hexanal), and vanillin.

Results suggest that the effects of defoliation at fruit set on the VOCs pattern is cultivar dependent and almost ineffective on Aleatico grapes. Moreover, early defoliation at fruit-set seems stressful for Neb-biolo grapes and its odorous and potentially secondary metabolites. These results can be useful to improve canopy and winemaking precision practices.

 

1. Poni et al., 2006. DOI: 10.5344/ajev.2006.57.4.397
2. Piombino et al., 2022. DOI: 10.1111/ajgw.12521

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Paola Piombino¹, Elisabetta Pittari¹, Alessandro Genovese², Andrea Bellincontro³, Osvaldo Failla⁴, Luigi Moio1, Fabio Mencarelli⁵

1. Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Avellino 83100, Italy
2. Department of Agricultural Sciences, Division of Food Science and Technology, University of Naples Federico II, Portici (NA), 80055, Italy
3. DIBAF, University of Tuscia, Via De Lellis, 01100 Viterbo, Italy
4. Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
5. Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy

Contact the author*

Keywords

defoliation, secondary metabolites, aromas

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to . The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.

SENSORY IMPROVEMENT OF DEALCOHOLISED WINES

Interest and willing-ness to buy alcohol-free wines by customers is increasing for several years [1]. Due to the rising relevance of dealcoholised wines it is the objective of this study to contribute to a better understanding of the flavor variation among dealcoholised wines and to explore enological measures, how to improve final quality.
First a range of commercial, alcoholfree white wines were analysed by the holistic sensory method projective mapping, including a question for hedonic acceptance. Based on the combination of a non-target-HS-SPME-GC/MS analysis with sensory analysis we obtained a clustering of the wines into three groups.

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.