terclim by ICS banner
IVES 9 IVES Conference Series 9 INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Abstract

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness. The aim of this research was therefore to study how different thickness of oak alternatives would influence the color, phenolic compounds and volatile composition of a red wine, especially with regard to the substances released by oak wood. For that purpose, a red wine was introduced in twelve 100-L plastic tanks with an oxygen permeability similar to oak barrels (Flexcube, Quilinox). Three tanks were supplemented with 2.5 g/L oak chips (between 7.5x3x1.5 and 20x13x3 mm), other three with 5 g/L of thin staves (7x47x960 mm), other three with 10 g/L of thick staves (17x47x960 mm) and finally the last three were maintained as controls. These dosages were chosen based on an equivalent oak impact intensity according to previous experiences.
All the wood alternatives were made of French oak (Q, petraea) with origin and characteristics as similar as possible. The wines were analyzed at 2, 6 and 12 months of aging in that conditions. Wines were also tasted by a trained panel at the end of aging time. The color intensity (CI), the Total Polyphenol Index (TPI) and the total tannins quantified by the methyl-cellulose precipitation method were significant higher in all wines supplemented with oak alternatives in respect to the controls, and it was observed that all these parameters increased as the thickness of the alternatives increased. In contrast, anthocyanins showed the opposite trend, being lower in concentration when the thickness of the alternatives was greater. Both trends, higher CI and lower anthocyanin concentration as the thickness of the oak alternatives increases, can be explained by the formation of polymeric pigments. In fact, the PVPP Index (% of combined anthocyanins) and the Ionization index (% of colored anthocyanins) augment as thickness increases. In general, all the volatile compounds coming from the wood (furans, vanillin, volatile phenols and whiskey-lactones) increased throughout the aging time and this increase was more important when the thickness of the alternatives was higher. Finally, the trained panel considered that color, aromatic intensity and complexity, sweetness, mouthfeel, structure and persistence of the wine improved significantly as the thickness of the alternatives increased. In addition, the panel preferred the wine aged with thick staves, followed in decreasing order by the wines aged with thin staves, oak chips and control. It can be concluded therefore that the thickness of the oak alternatives seems to have a clear influence on the composition and quality of the wines, the effect being significantly better when the thickness is higher.

 

1. Navarro, M., Mena, A., Giordanengo, T., Gómez-Alonso, S., García-Romero, E., Fort, F., Canals, J.M., Hermosín-Gutiérrez, I., Zamora, F. (2020). Oeno One, 3, 497–511.
2. Bautista-Ortín A.B., Lencina A.G., Cano-López M., Pardo-Mínguez F., López-Roca, J.M., Plaza E. (2008). Australian Journal of Grape and Wine Research, 14, 63–70.
3. Chira K., Teissedre P.L. (2013). European Food Research and Technology, 236, 735–746.
4. Hernández-Orte P., Franco E., González-Huerta C., Martínez-García J., Cabellos M., Suberviola J., Orriols I., Cacho J. (2014). Food Research International, 57, 234–241.
5. Gómez-García-Carpintero E., Gómez-Gallego M.A., Sánchez-Palomo E., González Viñas M.A. (2012). Food Chemistry, 134, 851–863.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Ignasi Solé-Clua¹, Pol Giménez¹, Arnau Just-Borras¹, Jordi Gombau¹, Adela Mena², Esteban García-Romero², Thomas Giordanen-go³, Thomas Bioulou³, Nicolas Mourey³, Joan Miquel Canals¹, Fernando Zamora1*

1. Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
2. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVI CAM, Ctra. Toledo-Albacete s/n. 13700, Tomelloso, Ciudad Real, Spain
3. R&D Tonnellerie Radoux – Pronektar, Sciage du Berry, ZA des Noraies, 36290 Mézières-en-Brenne, France

Contact the author*

Keywords

Oak alternatives, Thickness, wine composition, quality

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

VOLATILE, PHENOLIC AND COLORIMETRIC CHARACTERIZATION OF THREE DIFFERENT LAMBRUSCO APPELLATIONS

Lambrusco is a commercially successful sparkling red and rosé wine. With 13.06 million litres sold in 2021 was the second best-selling Italian wine after Chianti. According to National Catalogue of Vine Varieties there are thirteen Lambrusco Varieties with which to date are produced seven PDO wines. Among these, “Lambrusco Salamino di Santa Croce”, “Lambrusco Grasparossa di Castelvetro” and “Lambrusco di Sorbara” are the only ones that can be considered mono-varietal appellations, all located in Modena area. The PDOs contemplate the possibility of producing wines by secondary fermentation either in tank (Charmat method), or in bottle (Classico method). Sur lie is a third method commonly employed for Lambrusco, similar to the Classico method, from which differs for the absence of disgorgement.

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development.

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

In recent years, vineyards in Australia, the US, Canada, Chile, South Africa and Europe have been exposed to smoke from wildfires. Wines made from smoke-affected grapes often exhibit unpleasant smoky, ashy characters, attributed to the presence of smoke-derived volatile compounds, including volatile phenols (which occur in free and glycosylated forms). Various strategies for remediation of smoke tainted wine have been evaluated. The most effective strategies involve the removal of smoke taint compounds via the addition of adsorbent materials such as activated carbon, which can either be added directly or used in combination with nanofiltration. However, these treatments often simultaneously remove wine constituents responsible for desirable aroma, flavour and colour attributes.

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.