terclim by ICS banner
IVES 9 IVES Conference Series 9 INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Abstract

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness. The aim of this research was therefore to study how different thickness of oak alternatives would influence the color, phenolic compounds and volatile composition of a red wine, especially with regard to the substances released by oak wood. For that purpose, a red wine was introduced in twelve 100-L plastic tanks with an oxygen permeability similar to oak barrels (Flexcube, Quilinox). Three tanks were supplemented with 2.5 g/L oak chips (between 7.5x3x1.5 and 20x13x3 mm), other three with 5 g/L of thin staves (7x47x960 mm), other three with 10 g/L of thick staves (17x47x960 mm) and finally the last three were maintained as controls. These dosages were chosen based on an equivalent oak impact intensity according to previous experiences.
All the wood alternatives were made of French oak (Q, petraea) with origin and characteristics as similar as possible. The wines were analyzed at 2, 6 and 12 months of aging in that conditions. Wines were also tasted by a trained panel at the end of aging time. The color intensity (CI), the Total Polyphenol Index (TPI) and the total tannins quantified by the methyl-cellulose precipitation method were significant higher in all wines supplemented with oak alternatives in respect to the controls, and it was observed that all these parameters increased as the thickness of the alternatives increased. In contrast, anthocyanins showed the opposite trend, being lower in concentration when the thickness of the alternatives was greater. Both trends, higher CI and lower anthocyanin concentration as the thickness of the oak alternatives increases, can be explained by the formation of polymeric pigments. In fact, the PVPP Index (% of combined anthocyanins) and the Ionization index (% of colored anthocyanins) augment as thickness increases. In general, all the volatile compounds coming from the wood (furans, vanillin, volatile phenols and whiskey-lactones) increased throughout the aging time and this increase was more important when the thickness of the alternatives was higher. Finally, the trained panel considered that color, aromatic intensity and complexity, sweetness, mouthfeel, structure and persistence of the wine improved significantly as the thickness of the alternatives increased. In addition, the panel preferred the wine aged with thick staves, followed in decreasing order by the wines aged with thin staves, oak chips and control. It can be concluded therefore that the thickness of the oak alternatives seems to have a clear influence on the composition and quality of the wines, the effect being significantly better when the thickness is higher.

 

1. Navarro, M., Mena, A., Giordanengo, T., Gómez-Alonso, S., García-Romero, E., Fort, F., Canals, J.M., Hermosín-Gutiérrez, I., Zamora, F. (2020). Oeno One, 3, 497–511.
2. Bautista-Ortín A.B., Lencina A.G., Cano-López M., Pardo-Mínguez F., López-Roca, J.M., Plaza E. (2008). Australian Journal of Grape and Wine Research, 14, 63–70.
3. Chira K., Teissedre P.L. (2013). European Food Research and Technology, 236, 735–746.
4. Hernández-Orte P., Franco E., González-Huerta C., Martínez-García J., Cabellos M., Suberviola J., Orriols I., Cacho J. (2014). Food Research International, 57, 234–241.
5. Gómez-García-Carpintero E., Gómez-Gallego M.A., Sánchez-Palomo E., González Viñas M.A. (2012). Food Chemistry, 134, 851–863.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Ignasi Solé-Clua¹, Pol Giménez¹, Arnau Just-Borras¹, Jordi Gombau¹, Adela Mena², Esteban García-Romero², Thomas Giordanen-go³, Thomas Bioulou³, Nicolas Mourey³, Joan Miquel Canals¹, Fernando Zamora1*

1. Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
2. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVI CAM, Ctra. Toledo-Albacete s/n. 13700, Tomelloso, Ciudad Real, Spain
3. R&D Tonnellerie Radoux – Pronektar, Sciage du Berry, ZA des Noraies, 36290 Mézières-en-Brenne, France

Contact the author*

Keywords

Oak alternatives, Thickness, wine composition, quality

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

OENOLOGICAL POTENTIAL OF AUTOCHTHONOUS SACCHAROMYCES CEREVISIAE STRAINS AND THEIR EFFECT ON THE PRODUCTION OF TYPICAL SAVATIANO WINES

Due to the global demand for terroir wines, the winemaking industry has focused attention on exploiting the local yeast microflora of each wine growing region to express the regional character and enhance the sensory profile of wines such as varietal typicity and aroma complexity. The objective of the present study was to isolate and compare the indigenous strains of Saccharomyces cerevisiae present in different vineyards in the Mesogeia – Attiki wine region (Greece), evaluate their impact on chemical composition and sensory profile of Savatiano wines and select the most suitable ones for winemaking process.

FERMENTATION POTENTIAL OF INDIGENOUS NON-SACCHAROMYCES YEASTS ISOLATED FROM MARAŠTINA GRAPES OF CROATIAN VINEYARDS

The interest in indigenous non-Saccharomyces yeast for use in wine production has increased in recent years because they contribute to the complex character of the wine. The aim of this work was to investigate the fermentation products of ten indigenous strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes, belonging to Hypopichia pseudoburtonii, Metschnikowia pulcherrima, Metschnikowia sinensis, Metschnikowia chrysoperlae, Lachancea thermotolerans, Pichia kluyveri, Hanseniaspora uvarum, Hanseniaspora guillermondii, Hanseniaspora pseudoguillermondii, and Starmerella apicola species, and compare it with commercial non-Saccharomyces and Saccharomyces strains.