terclim by ICS banner
IVES 9 IVES Conference Series 9 INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Abstract

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness. The aim of this research was therefore to study how different thickness of oak alternatives would influence the color, phenolic compounds and volatile composition of a red wine, especially with regard to the substances released by oak wood. For that purpose, a red wine was introduced in twelve 100-L plastic tanks with an oxygen permeability similar to oak barrels (Flexcube, Quilinox). Three tanks were supplemented with 2.5 g/L oak chips (between 7.5x3x1.5 and 20x13x3 mm), other three with 5 g/L of thin staves (7x47x960 mm), other three with 10 g/L of thick staves (17x47x960 mm) and finally the last three were maintained as controls. These dosages were chosen based on an equivalent oak impact intensity according to previous experiences.
All the wood alternatives were made of French oak (Q, petraea) with origin and characteristics as similar as possible. The wines were analyzed at 2, 6 and 12 months of aging in that conditions. Wines were also tasted by a trained panel at the end of aging time. The color intensity (CI), the Total Polyphenol Index (TPI) and the total tannins quantified by the methyl-cellulose precipitation method were significant higher in all wines supplemented with oak alternatives in respect to the controls, and it was observed that all these parameters increased as the thickness of the alternatives increased. In contrast, anthocyanins showed the opposite trend, being lower in concentration when the thickness of the alternatives was greater. Both trends, higher CI and lower anthocyanin concentration as the thickness of the oak alternatives increases, can be explained by the formation of polymeric pigments. In fact, the PVPP Index (% of combined anthocyanins) and the Ionization index (% of colored anthocyanins) augment as thickness increases. In general, all the volatile compounds coming from the wood (furans, vanillin, volatile phenols and whiskey-lactones) increased throughout the aging time and this increase was more important when the thickness of the alternatives was higher. Finally, the trained panel considered that color, aromatic intensity and complexity, sweetness, mouthfeel, structure and persistence of the wine improved significantly as the thickness of the alternatives increased. In addition, the panel preferred the wine aged with thick staves, followed in decreasing order by the wines aged with thin staves, oak chips and control. It can be concluded therefore that the thickness of the oak alternatives seems to have a clear influence on the composition and quality of the wines, the effect being significantly better when the thickness is higher.

 

1. Navarro, M., Mena, A., Giordanengo, T., Gómez-Alonso, S., García-Romero, E., Fort, F., Canals, J.M., Hermosín-Gutiérrez, I., Zamora, F. (2020). Oeno One, 3, 497–511.
2. Bautista-Ortín A.B., Lencina A.G., Cano-López M., Pardo-Mínguez F., López-Roca, J.M., Plaza E. (2008). Australian Journal of Grape and Wine Research, 14, 63–70.
3. Chira K., Teissedre P.L. (2013). European Food Research and Technology, 236, 735–746.
4. Hernández-Orte P., Franco E., González-Huerta C., Martínez-García J., Cabellos M., Suberviola J., Orriols I., Cacho J. (2014). Food Research International, 57, 234–241.
5. Gómez-García-Carpintero E., Gómez-Gallego M.A., Sánchez-Palomo E., González Viñas M.A. (2012). Food Chemistry, 134, 851–863.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Ignasi Solé-Clua¹, Pol Giménez¹, Arnau Just-Borras¹, Jordi Gombau¹, Adela Mena², Esteban García-Romero², Thomas Giordanen-go³, Thomas Bioulou³, Nicolas Mourey³, Joan Miquel Canals¹, Fernando Zamora1*

1. Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
2. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVI CAM, Ctra. Toledo-Albacete s/n. 13700, Tomelloso, Ciudad Real, Spain
3. R&D Tonnellerie Radoux – Pronektar, Sciage du Berry, ZA des Noraies, 36290 Mézières-en-Brenne, France

Contact the author*

Keywords

Oak alternatives, Thickness, wine composition, quality

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.