terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW TREATMENTS FOR TEMPRANILLO WINES BY USING CABERNET SAUVIGNON VINE-SHOOTS AND MICRO-OXYGENATION

NEW TREATMENTS FOR TEMPRANILLO WINES BY USING CABERNET SAUVIGNON VINE-SHOOTS AND MICRO-OXYGENATION

Abstract

Toasted vine-shoots as enological additive represents a promising topic due to their significant effect on wine profile. However, the use of this new enological tool with SEGs varieties different than wine and combined with others winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far, despite this combination could result in wine with high chemical and organoleptic quality.

In this study, Tempranillo wines were in contact with Cabernet Sauvignon SEGs in two different doses (D1 and D2), added at the end of malolactic fermentation and with two fixed dosages of micro-oxygenation (low, LMOX; and high, HMOX). At the end of the SEGs-MOX treatments, wines were bottled, and a sensory analysis was carried out over 6 months using a specific scorecard which included color, olfactory and taste descriptors. Also, along with the traditional olfactory and taste descriptors, a new one, named SEGs, was included to describe the specific impact of the vine-shoots. Besides, the phenolic and volatile compositions of wines were analyzed by HPLC-DAD and SBSE-GC/MS, respectively.

In terms of sensory profile, wines were more purple at bottling, regardless of SEGs and MOX doses which decreased with bottle ageing, but the red color remained after 6 months in bottle. In the olfactory phase, wines were less herbaceous and showed more intense notes of nuts, toast, and red fruits after 6 months in bottle with both doses of SEGs and MOX. Finally, in the taste phase, panelists described the wines elaborated with D1 as more intense, highlighting the nuts, toast and vanilla notes after 6 months in bottle and with the HMOX. On his part, wines elaborated with D2 showed a very similar profile, regardless of the SEGs/MOX combination used, with slight differences between them in red fruits or vanillas notes. As for tannins, tasters described them as bitter, but also silkier at bottling time. In terms of volatile com-pounds, the highest concentration of esters, aldehydes or norisoprenoids, among others, was observed mainly in those wines elaborated with the highest doses of SEGs and after bottle time. As for phenolic compounds, a general decrease in their content was observed.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

C. Cebrián-Tarancón¹, R. Sánchez-Gómez¹, A.M. Martínez-Gil², M. del Álamo-Sanza², I. Nevares³, M. R. Salinas¹

1. Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain.
2. Departamento de Química Analítica, UVaMOX – Universidad de Valladolid, 34004 Palencia, Spain.
3. Departamento de Ingeniería Agroforestal, UVaMOX – Universidad de Valladolid, 34004 Palencia, Spain.

Contact the author*

Keywords

vine-shoots, micro-oxygenation, enological additive, bottle aging

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.