terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW TREATMENTS FOR TEMPRANILLO WINES BY USING CABERNET SAUVIGNON VINE-SHOOTS AND MICRO-OXYGENATION

NEW TREATMENTS FOR TEMPRANILLO WINES BY USING CABERNET SAUVIGNON VINE-SHOOTS AND MICRO-OXYGENATION

Abstract

Toasted vine-shoots as enological additive represents a promising topic due to their significant effect on wine profile. However, the use of this new enological tool with SEGs varieties different than wine and combined with others winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far, despite this combination could result in wine with high chemical and organoleptic quality.

In this study, Tempranillo wines were in contact with Cabernet Sauvignon SEGs in two different doses (D1 and D2), added at the end of malolactic fermentation and with two fixed dosages of micro-oxygenation (low, LMOX; and high, HMOX). At the end of the SEGs-MOX treatments, wines were bottled, and a sensory analysis was carried out over 6 months using a specific scorecard which included color, olfactory and taste descriptors. Also, along with the traditional olfactory and taste descriptors, a new one, named SEGs, was included to describe the specific impact of the vine-shoots. Besides, the phenolic and volatile compositions of wines were analyzed by HPLC-DAD and SBSE-GC/MS, respectively.

In terms of sensory profile, wines were more purple at bottling, regardless of SEGs and MOX doses which decreased with bottle ageing, but the red color remained after 6 months in bottle. In the olfactory phase, wines were less herbaceous and showed more intense notes of nuts, toast, and red fruits after 6 months in bottle with both doses of SEGs and MOX. Finally, in the taste phase, panelists described the wines elaborated with D1 as more intense, highlighting the nuts, toast and vanilla notes after 6 months in bottle and with the HMOX. On his part, wines elaborated with D2 showed a very similar profile, regardless of the SEGs/MOX combination used, with slight differences between them in red fruits or vanillas notes. As for tannins, tasters described them as bitter, but also silkier at bottling time. In terms of volatile com-pounds, the highest concentration of esters, aldehydes or norisoprenoids, among others, was observed mainly in those wines elaborated with the highest doses of SEGs and after bottle time. As for phenolic compounds, a general decrease in their content was observed.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

C. Cebrián-Tarancón¹, R. Sánchez-Gómez¹, A.M. Martínez-Gil², M. del Álamo-Sanza², I. Nevares³, M. R. Salinas¹

1. Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain.
2. Departamento de Química Analítica, UVaMOX – Universidad de Valladolid, 34004 Palencia, Spain.
3. Departamento de Ingeniería Agroforestal, UVaMOX – Universidad de Valladolid, 34004 Palencia, Spain.

Contact the author*

Keywords

vine-shoots, micro-oxygenation, enological additive, bottle aging

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.