terclim by ICS banner
IVES 9 IVES Conference Series 9 YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

Abstract

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021). The recent discovery of the wine-making potential of the non-Saccharomyces yeast Starmerella bacillaris has sparked new interest in the use of this species for lees valorization, due to its potential difference in cellular composition from the conventional wine yeast Saccharomyces cerevisiae (Lemos et al., 2016; Moreira et al., 2022). To investigate the cell compositions of yeasts present in the lees, 5 strains of Starmerella bacillaris and Saccharomyces cerevisiae were grown in winemaking conditions. After cells harvesting, different cell components (from cell wall and cytoplasm) were separated by means of cell breakage with glass beads and further enzymatic or chemical treatments. The fractions were characterized in respect of sugar and protein content, by means of HPLC and SDS-PAGE separation, evidencing differences between the species in terms of mannose, glucose and N-acetylglucosamine profile, protein content and protein molecular size. To investigate the practical implications on winemaking, the fractions were tested on wine as agents of protein stabilization and fining. This allowed to make some preliminary evaluation about the potential applications of Starmerella bacillaris as yeast derivatives, obtained from yeast lees.

 

1. de Iseppi, A., Lomolino, G., Marangon, M., & Curioni, A. (2020). Current and future strategies for wine yeast lees valorization. In Food Research International (Vol. 137). Elsevier Ltd. https://doi.org/10.1016/j.foodres.2020.109352
2. de Iseppi, A., Marangon, M., Vincenzi, S., Lomolino, G., Curioni, A., & Divol, B. (2021). A novel approach for the valorization of wine lees as a source of compounds able to modify wine properties. LWT, 136. https://doi.org/10.1016/j.lwt.2020.110274
3. Lemos, W. J., Bovo, B., Nadai, C., Crosato, G., Carlot, M., Favaron, F., Giacomini, A., & Corich, V. (2016). Biocontrol ability and action mechanism of Starmerella bacillaris (synonym Candida zemplinina) isolated from wine musts against gray mold di-sease agent Botrytis cinerea on grape and their effects on alcoholic fermentation. Frontiers in Microbiology, 7(AUG). https://doi.org/10.3389/fmicb.2016.01249
4. Moreira, L. de P. D., Nadai, C., Duarte, V. da S., Brearley-Smith, E. J., Marangon, M., Vincenzi, S., Giacomini, A., & Corich, V.(2022). Starmerella bacillaris Strains Used in Sequential Alcoholic Fermentation with Saccharomyces cerevisiae Improves Protein Stability in White Wines. Fermentation, 8(6), 252. https://doi.org/10.3390/FERMENTATION8060252/S1

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Zeno Molinelli 1,3, Chiara Nadai 2,3, Simone Vincenzi 1,3, Alessio Giacomini ¹, Celine Sparrow ⁴, Paolo Antoniali ⁵, Daniele Pizzinato ⁴, Antoine Gobert ⁴ and Viviana Corich 1,3

1. Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of   Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy
2. Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova,Viale dell’Università 16, 35020 Legnaro, PD, Italy
3. Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova,Viale XXVIII Aprile 14, 31015 Conegliano, TV, Italy
4. SAS Sofralab, 79 Ave AA Thevenet,BP 1031, Magenta, France
5. Italiana Biotecnologie, Via Vigazzolo 112, I-36054 Montebello Vicentino, Italy

Contact the author*

Keywords

non-saccharomyces yeast, Yeast cell walls, Yeast protein extracts, Yeast polysaccharides

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.