terclim by ICS banner
IVES 9 IVES Conference Series 9 YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

Abstract

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021). The recent discovery of the wine-making potential of the non-Saccharomyces yeast Starmerella bacillaris has sparked new interest in the use of this species for lees valorization, due to its potential difference in cellular composition from the conventional wine yeast Saccharomyces cerevisiae (Lemos et al., 2016; Moreira et al., 2022). To investigate the cell compositions of yeasts present in the lees, 5 strains of Starmerella bacillaris and Saccharomyces cerevisiae were grown in winemaking conditions. After cells harvesting, different cell components (from cell wall and cytoplasm) were separated by means of cell breakage with glass beads and further enzymatic or chemical treatments. The fractions were characterized in respect of sugar and protein content, by means of HPLC and SDS-PAGE separation, evidencing differences between the species in terms of mannose, glucose and N-acetylglucosamine profile, protein content and protein molecular size. To investigate the practical implications on winemaking, the fractions were tested on wine as agents of protein stabilization and fining. This allowed to make some preliminary evaluation about the potential applications of Starmerella bacillaris as yeast derivatives, obtained from yeast lees.

 

1. de Iseppi, A., Lomolino, G., Marangon, M., & Curioni, A. (2020). Current and future strategies for wine yeast lees valorization. In Food Research International (Vol. 137). Elsevier Ltd. https://doi.org/10.1016/j.foodres.2020.109352
2. de Iseppi, A., Marangon, M., Vincenzi, S., Lomolino, G., Curioni, A., & Divol, B. (2021). A novel approach for the valorization of wine lees as a source of compounds able to modify wine properties. LWT, 136. https://doi.org/10.1016/j.lwt.2020.110274
3. Lemos, W. J., Bovo, B., Nadai, C., Crosato, G., Carlot, M., Favaron, F., Giacomini, A., & Corich, V. (2016). Biocontrol ability and action mechanism of Starmerella bacillaris (synonym Candida zemplinina) isolated from wine musts against gray mold di-sease agent Botrytis cinerea on grape and their effects on alcoholic fermentation. Frontiers in Microbiology, 7(AUG). https://doi.org/10.3389/fmicb.2016.01249
4. Moreira, L. de P. D., Nadai, C., Duarte, V. da S., Brearley-Smith, E. J., Marangon, M., Vincenzi, S., Giacomini, A., & Corich, V.(2022). Starmerella bacillaris Strains Used in Sequential Alcoholic Fermentation with Saccharomyces cerevisiae Improves Protein Stability in White Wines. Fermentation, 8(6), 252. https://doi.org/10.3390/FERMENTATION8060252/S1

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Zeno Molinelli 1,3, Chiara Nadai 2,3, Simone Vincenzi 1,3, Alessio Giacomini ¹, Celine Sparrow ⁴, Paolo Antoniali ⁵, Daniele Pizzinato ⁴, Antoine Gobert ⁴ and Viviana Corich 1,3

1. Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of   Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy
2. Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova,Viale dell’Università 16, 35020 Legnaro, PD, Italy
3. Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova,Viale XXVIII Aprile 14, 31015 Conegliano, TV, Italy
4. SAS Sofralab, 79 Ave AA Thevenet,BP 1031, Magenta, France
5. Italiana Biotecnologie, Via Vigazzolo 112, I-36054 Montebello Vicentino, Italy

Contact the author*

Keywords

non-saccharomyces yeast, Yeast cell walls, Yeast protein extracts, Yeast polysaccharides

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.

WINE CONSUMER TRADE-OFF BETWEEN ORGANOLEPTIC CHARACTERISTICS AND SUSTAINABLE CLAIMS. AN EXPERIMENT ON RED WINES FROM BORDEAUX REGION

In economics, the perception of wine quality is not limited to sensorial characteristics: an indication of the region of production significantly affects the perception of quality and consumers’ WTP ([1]; [2]). However, [3] or more recently [4] show that even if a wine has an organic label, the taste of wine remains the predominant criterion in consumer preferences. The contribution of our experiment is to evaluate the impact of responsible attributes (organic label, Non Added Sulfites, HVE certification) on the appreciation of several red wines on the market. More than 280 consumers participated to the present study and they perform 25 tastings divided into 5 different sessions. 20 different red wines from Bordeaux Area are tasted.

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.