terclim by ICS banner
IVES 9 IVES Conference Series 9 YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

Abstract

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021). The recent discovery of the wine-making potential of the non-Saccharomyces yeast Starmerella bacillaris has sparked new interest in the use of this species for lees valorization, due to its potential difference in cellular composition from the conventional wine yeast Saccharomyces cerevisiae (Lemos et al., 2016; Moreira et al., 2022). To investigate the cell compositions of yeasts present in the lees, 5 strains of Starmerella bacillaris and Saccharomyces cerevisiae were grown in winemaking conditions. After cells harvesting, different cell components (from cell wall and cytoplasm) were separated by means of cell breakage with glass beads and further enzymatic or chemical treatments. The fractions were characterized in respect of sugar and protein content, by means of HPLC and SDS-PAGE separation, evidencing differences between the species in terms of mannose, glucose and N-acetylglucosamine profile, protein content and protein molecular size. To investigate the practical implications on winemaking, the fractions were tested on wine as agents of protein stabilization and fining. This allowed to make some preliminary evaluation about the potential applications of Starmerella bacillaris as yeast derivatives, obtained from yeast lees.

 

1. de Iseppi, A., Lomolino, G., Marangon, M., & Curioni, A. (2020). Current and future strategies for wine yeast lees valorization. In Food Research International (Vol. 137). Elsevier Ltd. https://doi.org/10.1016/j.foodres.2020.109352
2. de Iseppi, A., Marangon, M., Vincenzi, S., Lomolino, G., Curioni, A., & Divol, B. (2021). A novel approach for the valorization of wine lees as a source of compounds able to modify wine properties. LWT, 136. https://doi.org/10.1016/j.lwt.2020.110274
3. Lemos, W. J., Bovo, B., Nadai, C., Crosato, G., Carlot, M., Favaron, F., Giacomini, A., & Corich, V. (2016). Biocontrol ability and action mechanism of Starmerella bacillaris (synonym Candida zemplinina) isolated from wine musts against gray mold di-sease agent Botrytis cinerea on grape and their effects on alcoholic fermentation. Frontiers in Microbiology, 7(AUG). https://doi.org/10.3389/fmicb.2016.01249
4. Moreira, L. de P. D., Nadai, C., Duarte, V. da S., Brearley-Smith, E. J., Marangon, M., Vincenzi, S., Giacomini, A., & Corich, V.(2022). Starmerella bacillaris Strains Used in Sequential Alcoholic Fermentation with Saccharomyces cerevisiae Improves Protein Stability in White Wines. Fermentation, 8(6), 252. https://doi.org/10.3390/FERMENTATION8060252/S1

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Zeno Molinelli 1,3, Chiara Nadai 2,3, Simone Vincenzi 1,3, Alessio Giacomini ¹, Celine Sparrow ⁴, Paolo Antoniali ⁵, Daniele Pizzinato ⁴, Antoine Gobert ⁴ and Viviana Corich 1,3

1. Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of   Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy
2. Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova,Viale dell’Università 16, 35020 Legnaro, PD, Italy
3. Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova,Viale XXVIII Aprile 14, 31015 Conegliano, TV, Italy
4. SAS Sofralab, 79 Ave AA Thevenet,BP 1031, Magenta, France
5. Italiana Biotecnologie, Via Vigazzolo 112, I-36054 Montebello Vicentino, Italy

Contact the author*

Keywords

non-saccharomyces yeast, Yeast cell walls, Yeast protein extracts, Yeast polysaccharides

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.

PERCEPTUAL INTERACTIONS PHENOMENA INVOLVING VARIOUS VOLATILE COMPOUND FAMILIES LINKED TO SOME FRUITY NOTES IN BORDEAUX RED WINES

Fruity notes play a key role in the consumer’s appreciation of Bordeaux red wines. If literature provides a lot of knowledge about the nature of volatile compounds involved in this fruity expression, the sensory phenomena involving these compounds in mixture still need to be explored. Considering previous sensory works about the impact of esters and some overripening compounds, the goal of this work was to study the implication of perceptual interactions involving red wine odorant compounds of diverse origins and described as potentially affecting fruity aromatic expression.

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.