GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Towards the definition of a detailed transcriptomic map of grape berry development

Towards the definition of a detailed transcriptomic map of grape berry development

Abstract

Context and purpose of the study ‐ In the last years the application of genomic tools to the analysis of gene expression during grape berry development generated a huge amount of transcriptomic data from different varieties and growing conditions. This information set the stage to understand the molecular basis of crucial developmental and metabolic rearrangements occurring during grape berry formation and ripening. It is now clear that the variation of a portion of berry transcriptome is conserved across cultivars and growing conditions, and thus may be used universally to describe the stage of berry development. In this work we explore the possibility of using the transcriptomic data generated from two cultivars to define a very detailed developmental map of the grape berry.

Material and methods ‐ To map the molecular events associated with berry development at very high temporal resolution, we performed RNA‐seq analysis of berry samples collected every week from fruit‐ set to maturity from Pinot noir and Cabernet Sauvignon vines grown in the same location. The experiment was replicated across three consecutive years (2012, 2013, 2014) resulting in 219 samples overall. Applying multivariate analyses to the most variable portion of the transcriptome, we built a transcriptomic model of berry development based on the molecular information obtained from samples of both cultivars.

Results ‐ The Pinot noir and Cabernet Sauvignon samples mostly aligned in a 3D transcriptomic map (~80% of the variance described by Principal Component Analysis), allowing to define a general model of berry development based on gene expression. The performance of the model in describing the development of other grape varieties was accessed projecting RNA‐seq samples of fruit development of ten Italian cultivars onto the model. Both red and white‐skin berry samples mapped on the transcriptomic map and revealed alignment by standard ripening parameters (e.g. total soluble solids) as well as unrelated to any of these. Moreover, we validated that berry maturation of the same cultivar cultivated in different International growing regions can be well represented and aligned by means of our transcriptomic map. These results showed that the transcriptomic information can be accessed to precisely define a model of “molecular phenology” that can be used to map the ontogenetic development of the fruit with high precision and to align the stage of berry development of different grapes. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Marianna FASOLI (1), Chandra L. RICHTER (1), Sara ZENONI (2), Marco SANDRI (2), Paola ZUCCOLOTTO (3), Mario PEZZOTTI (2), Nick DOKOOZLIAN (1), and Giovanni Battista TORNIELLI(2)

(1) E&J Gallo Winery, Modesto, CA 95353, USA
(2) Department of Biotechnology, University of Verona, 37134 Verona, Italy
(3) Big & Open Data Innovation Laboratory, University of Brescia, 25123 Brescia, Italy

Contact the author

Keywords

Grapevine, Berry development, Ripening, Molecular Phenology, Transcriptomics

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Possible toxicological risk arising from contamination of grapes and derivatives by emerging mycotoxins: patulin

Following the acquired awareness of the presence of ochratoxin A in grape derivatives, actions were undertaken to contain this contamination, and attempts were made to evaluate the presence of any other molecule belonging to this class.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: LEVELS AND PATTERNS OBSERVED IN 2020 WINES FROM THE UNITED STATES WEST COAST

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors, described as “smoky”, “bacon”, “campfire” and “ashtray”, often long-lasting and lingering on the palate. In cases of large wildfire events, economic losses for all wine industry actors can be devastating.

Response of Albariño to local environmental conditions in Uruguay

Albariño is a white cultivar that has been recently promoted in Uruguay due to its ability to maintain high berry quality even in adverse climate conditions during ripening. This study aims to assess the effect of different topographic conditions on Albariño agronomic behavior and oenological potential.

Rootstocks and climate change: adding up means learning faster

In this video recording of the IVES science meeting 2025, Gonzaga Santesteban (Public University of Navarra, Pamplona, Spain) speaks about rootstocks, climate change and meta-analysis. This presentation is based on an original article accessible for free on OENO One.

Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Understanding grapevine responses to increasing atmospheric CO2 (aCO2) concentrations is crucial for assessing the impact of climate change on viticulture. Previously, at the VineyardFACE (Free Air Carbon dioxide Enrichment) experiment in Geisenheim, leaf gas exchange measurements were made as Vitis vinifera cv. Cabernet Sauvignon established from planting (2014 to 2016) under aCO2 or elevated CO2 (eCO2, aCO2 + 20%) concentrations. Contrary to many preceding observations with grapevines and other perennial plant species the young vines showed an increased intrinsic water use efficiency (WUEi) that was mainly associated with an increase in net assimilation (A) rather than a decrease in stomatal conductance (gs) under eCO2.