GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Towards the definition of a detailed transcriptomic map of grape berry development

Towards the definition of a detailed transcriptomic map of grape berry development

Abstract

Context and purpose of the study ‐ In the last years the application of genomic tools to the analysis of gene expression during grape berry development generated a huge amount of transcriptomic data from different varieties and growing conditions. This information set the stage to understand the molecular basis of crucial developmental and metabolic rearrangements occurring during grape berry formation and ripening. It is now clear that the variation of a portion of berry transcriptome is conserved across cultivars and growing conditions, and thus may be used universally to describe the stage of berry development. In this work we explore the possibility of using the transcriptomic data generated from two cultivars to define a very detailed developmental map of the grape berry.

Material and methods ‐ To map the molecular events associated with berry development at very high temporal resolution, we performed RNA‐seq analysis of berry samples collected every week from fruit‐ set to maturity from Pinot noir and Cabernet Sauvignon vines grown in the same location. The experiment was replicated across three consecutive years (2012, 2013, 2014) resulting in 219 samples overall. Applying multivariate analyses to the most variable portion of the transcriptome, we built a transcriptomic model of berry development based on the molecular information obtained from samples of both cultivars.

Results ‐ The Pinot noir and Cabernet Sauvignon samples mostly aligned in a 3D transcriptomic map (~80% of the variance described by Principal Component Analysis), allowing to define a general model of berry development based on gene expression. The performance of the model in describing the development of other grape varieties was accessed projecting RNA‐seq samples of fruit development of ten Italian cultivars onto the model. Both red and white‐skin berry samples mapped on the transcriptomic map and revealed alignment by standard ripening parameters (e.g. total soluble solids) as well as unrelated to any of these. Moreover, we validated that berry maturation of the same cultivar cultivated in different International growing regions can be well represented and aligned by means of our transcriptomic map. These results showed that the transcriptomic information can be accessed to precisely define a model of “molecular phenology” that can be used to map the ontogenetic development of the fruit with high precision and to align the stage of berry development of different grapes. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Marianna FASOLI (1), Chandra L. RICHTER (1), Sara ZENONI (2), Marco SANDRI (2), Paola ZUCCOLOTTO (3), Mario PEZZOTTI (2), Nick DOKOOZLIAN (1), and Giovanni Battista TORNIELLI(2)

(1) E&J Gallo Winery, Modesto, CA 95353, USA
(2) Department of Biotechnology, University of Verona, 37134 Verona, Italy
(3) Big & Open Data Innovation Laboratory, University of Brescia, 25123 Brescia, Italy

Contact the author

Keywords

Grapevine, Berry development, Ripening, Molecular Phenology, Transcriptomics

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Towards a better understanding of the root system diversity and plasticityin young grafted vines using 2D imaging and 3D modelling tools

Three-dimensional functional-structural root architecture models, which decompose the root system architecture (RSA) into elementary developmental processes such as root emission, axial growth, branching patterns and tropism have become useful tools for (i) reconstructing in silico the spatial and temporal dynamics of root systems in a soil volume, (ii) analyzing their genotypic diversity and plasticity to the environment, and (iii) overcoming the bottleneck associated with their visualization and measurement in situ. Here, we present an original work on RSA phenotyping and modelling in grapevine. First, we developed 2D image-based analysis pipelines to quantify morphological and architectural traits in young grafts. Second, we parametrized and validated the 3D root model Archisimple on two rootstock genotypes (RGM, 1103P) grafted with V. vinifera Cabernet-Sauvignon and grown in different controlled conditions (rhizotrons, pots, tubes).

Estudio comparativo del potencial enológico de dos varietales tintos cultivados en la isla de Tenerife

En el presente trabajo se ha realizado un estudio comparativo entre los varietales tintos Listán negro y Negramolle en la Denominación de Origen Tacoronte-Acentejo. Se han determinado durante dos años

Influence of ‘pinotage’ defoliation on fruit and wine quality

Among the different management techniques in Viticulture, which have
been developed with the purpose of optimizing the interception of sunlight, the photosynthetic capacity of
the plant and the microclimate of the clusters, especially in varieties that show excess vigor, the management of defoliation presents great importance. The defoliation consists of the removal of leaves that cover or that are in direct contact with the curls, which can cause physical damages in the berries, and aims to balance the relation between part area and number of fruits, providing the aeration and insolation in the interior of the vineyard, as well as reduce the incidence of rot in order to achieve greater efficiency in phytosanitary treatments and quality musts.

Early likovrisi: the new white very early table grape seedless and resistant variety

This paper presents is the create, the study and ampelographic description the new «Early Likovrisi», that was created (2014) in Greece by Pantelis Zamanidis.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.