GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Towards the definition of a detailed transcriptomic map of grape berry development

Towards the definition of a detailed transcriptomic map of grape berry development

Abstract

Context and purpose of the study ‐ In the last years the application of genomic tools to the analysis of gene expression during grape berry development generated a huge amount of transcriptomic data from different varieties and growing conditions. This information set the stage to understand the molecular basis of crucial developmental and metabolic rearrangements occurring during grape berry formation and ripening. It is now clear that the variation of a portion of berry transcriptome is conserved across cultivars and growing conditions, and thus may be used universally to describe the stage of berry development. In this work we explore the possibility of using the transcriptomic data generated from two cultivars to define a very detailed developmental map of the grape berry.

Material and methods ‐ To map the molecular events associated with berry development at very high temporal resolution, we performed RNA‐seq analysis of berry samples collected every week from fruit‐ set to maturity from Pinot noir and Cabernet Sauvignon vines grown in the same location. The experiment was replicated across three consecutive years (2012, 2013, 2014) resulting in 219 samples overall. Applying multivariate analyses to the most variable portion of the transcriptome, we built a transcriptomic model of berry development based on the molecular information obtained from samples of both cultivars.

Results ‐ The Pinot noir and Cabernet Sauvignon samples mostly aligned in a 3D transcriptomic map (~80% of the variance described by Principal Component Analysis), allowing to define a general model of berry development based on gene expression. The performance of the model in describing the development of other grape varieties was accessed projecting RNA‐seq samples of fruit development of ten Italian cultivars onto the model. Both red and white‐skin berry samples mapped on the transcriptomic map and revealed alignment by standard ripening parameters (e.g. total soluble solids) as well as unrelated to any of these. Moreover, we validated that berry maturation of the same cultivar cultivated in different International growing regions can be well represented and aligned by means of our transcriptomic map. These results showed that the transcriptomic information can be accessed to precisely define a model of “molecular phenology” that can be used to map the ontogenetic development of the fruit with high precision and to align the stage of berry development of different grapes. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Marianna FASOLI (1), Chandra L. RICHTER (1), Sara ZENONI (2), Marco SANDRI (2), Paola ZUCCOLOTTO (3), Mario PEZZOTTI (2), Nick DOKOOZLIAN (1), and Giovanni Battista TORNIELLI(2)

(1) E&J Gallo Winery, Modesto, CA 95353, USA
(2) Department of Biotechnology, University of Verona, 37134 Verona, Italy
(3) Big & Open Data Innovation Laboratory, University of Brescia, 25123 Brescia, Italy

Contact the author

Keywords

Grapevine, Berry development, Ripening, Molecular Phenology, Transcriptomics

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes.

Beyond classical statistics – data fusion coupled with pattern recognition

AIM: Patterns in data obtained from wine chemical and sensory evaluations are difficult to infer using classical statistics.

Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Unmanned Aerial Vehicles (UAVs) are increasingly used to monitor canopy structure and vineyard performance. Compared with traditional remote sensing platforms (e.g. aircraft and satellite), UAVs offer a higher operational flexibility and can acquire ultra-high resolution images in formats such as true color red, green and blue (RGB) and multispectral. Using photogrammetry, 3D vineyard models and normalized difference vegetation index (NDVI) maps can be created from UAV images and used to study the structure and health of grapevine canopies. However, there is a lack of comparison between UAV-based images and ground-based measurements, such as leaf area index (LAI) and canopy porosity.

ABA and ethephon alleviated to a different extent the impact of elevated temperatures on grape berry composition

The Intergovernmental Panel on Climate Change (IPCC) forecasts an increase in global temperature and a decrease in relative humidity (RH) in the coming decades, which may have implications for berry ripening and composition.

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.