GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Towards the definition of a detailed transcriptomic map of grape berry development

Towards the definition of a detailed transcriptomic map of grape berry development

Abstract

Context and purpose of the study ‐ In the last years the application of genomic tools to the analysis of gene expression during grape berry development generated a huge amount of transcriptomic data from different varieties and growing conditions. This information set the stage to understand the molecular basis of crucial developmental and metabolic rearrangements occurring during grape berry formation and ripening. It is now clear that the variation of a portion of berry transcriptome is conserved across cultivars and growing conditions, and thus may be used universally to describe the stage of berry development. In this work we explore the possibility of using the transcriptomic data generated from two cultivars to define a very detailed developmental map of the grape berry.

Material and methods ‐ To map the molecular events associated with berry development at very high temporal resolution, we performed RNA‐seq analysis of berry samples collected every week from fruit‐ set to maturity from Pinot noir and Cabernet Sauvignon vines grown in the same location. The experiment was replicated across three consecutive years (2012, 2013, 2014) resulting in 219 samples overall. Applying multivariate analyses to the most variable portion of the transcriptome, we built a transcriptomic model of berry development based on the molecular information obtained from samples of both cultivars.

Results ‐ The Pinot noir and Cabernet Sauvignon samples mostly aligned in a 3D transcriptomic map (~80% of the variance described by Principal Component Analysis), allowing to define a general model of berry development based on gene expression. The performance of the model in describing the development of other grape varieties was accessed projecting RNA‐seq samples of fruit development of ten Italian cultivars onto the model. Both red and white‐skin berry samples mapped on the transcriptomic map and revealed alignment by standard ripening parameters (e.g. total soluble solids) as well as unrelated to any of these. Moreover, we validated that berry maturation of the same cultivar cultivated in different International growing regions can be well represented and aligned by means of our transcriptomic map. These results showed that the transcriptomic information can be accessed to precisely define a model of “molecular phenology” that can be used to map the ontogenetic development of the fruit with high precision and to align the stage of berry development of different grapes. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Marianna FASOLI (1), Chandra L. RICHTER (1), Sara ZENONI (2), Marco SANDRI (2), Paola ZUCCOLOTTO (3), Mario PEZZOTTI (2), Nick DOKOOZLIAN (1), and Giovanni Battista TORNIELLI(2)

(1) E&J Gallo Winery, Modesto, CA 95353, USA
(2) Department of Biotechnology, University of Verona, 37134 Verona, Italy
(3) Big & Open Data Innovation Laboratory, University of Brescia, 25123 Brescia, Italy

Contact the author

Keywords

Grapevine, Berry development, Ripening, Molecular Phenology, Transcriptomics

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effect of the commercial inoculum of arbuscular mycorrhiza in the establishment of a commercial vineyard of the cultivar “Manto negro

The favorable effect of symbiosis with arbuscular mycorrhizal fungi (AMF) has been known and studied since the 60s. Nowadays, many companies took the chance to start promoting and selling commercial inoculants of AMF, in order to be used as biofertilizers and encourage sustainable biological agriculture. However, the positive effect of these commercial biofertilizers on plant growth is not always demonstrated, especially under field conditions. In this study, we used a commercial inoculum on newly planted grapevines of a local cultivar grafted on a common rootstock R110. We followed the physiological status of vines, growth and productivity and functional biodiversity of soil bacteria during the first and second years of 20 inoculated with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseaeAMF at field planting time and 20 non-inoculated control plants. All the parameters measured showed a neutral to negative effect on plant growth and production. The inoculated plants always presented lower values of photosynthesis, growth and grape production, although in some cases the differences did not reach statistical significance. On the contrary, the inoculation supposed an increase of the bacterial functional diversity, although the differences were not statistically significant either. Several studies show that the effect of inoculation with AMF is context-dependent. The non-favorable effects are probably due to inoculation ineffectiveness under complex field conditions and/or that, under certain conditions, AMF presence may be a parasitic association. This puts into question the effectiveness of its application in the field. Therefore, it is recommended to only resort to this type of biofertilizer when the cultivation conditions require it (e.g., very low previous microbial diversity, foreseeable stress due to drought, salinity, or lack of nutrients) and not as a general fertilization practice.

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” character has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.
Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew.

Changes in flavonol profile are a reliable indicator to assess the exposure of red grape berries to solar radiation and canopy architecture

Exposure to solar radiation affects berry composition through photomorphogenesis or changes in temperature. Flavonol synthesis is upregulated by UV‐B radiation

Can the satellite image resolution be improved to support precision agriculture in the vineyard through vegetation indices?

Aim: This study aims to show the application of a new methodological approach to improve the resolution of Sentinel-2A images and derived vegetation indices through the results from different vineyards. 

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).