GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Survey assessing different practices for mechanical winter pruning in Southern France vineyards

Survey assessing different practices for mechanical winter pruning in Southern France vineyards

Abstract

Context and purpose of the study – Winter pruning is today the longest operation for hand workers in the vineyard. Over the last years, mechanical pruning practices have become popular in southern France vineyards to respond to competitiveness issue especially for the basic and mid-range wine production. Wine farmers have developed different vineyard management techniques associated with mechanical winter pruning. They sought to be precise or not to control the buds number per vine. They maintained the vertical trellis system or grew the vine on a free cordon. They transformed the vineyard in minimal pruning system. The purpose of this survey was to assess a state of the practices in southern France vineyards, around 255 000 ha, which 2/3 are producing basic and mid-range wines.

Material and methods –  The survey was built on two steps. The first one was a qualitative follow-up with individual interviews on targeted winegrowers or cooperative’s technical managers who have been leaders in mechanical winter pruning development. These interviews allowed to build the second step survey. This second step consisted in a quantitative approach with an online questionnaire for winegrowers. It was composed by 43 to 63 closed-ended questions, with different fields such as farm characteristics, vineyard and soil management, vine-plot description and mechanical pruning operations. Statistical treatments were run with Addinsoft XLStat software.

Results – Results showed that there are three main mechanical pruning (mechaP) practices: a precise and a hedge mechaP, leaving lengths of branches respectively inferior or superior to 20 cm above the cordon line, and at last a minimal pruning system with few trimming operations on the canopy. Precise mechaP appears to be the most used technique with around 80% of the responses followed by the minimal pruning system, 15% of the responses, and the hedge mechaP with 5%. 56% of the estates are using mechanical pruning combined with trellised vertical shoot positioning (VSP) system, 22% with the free cordon system and 22% are using both systems.
Economic save is the main motivation to develop mechaP, due to the time save with winter pruning, followed by the difficulty to find handwork forces. The main gain observed by the producers due to mechaP is the increase and the regularity of the yield that impact positively the turnover per hectare. Finally, they consider that mechaP allows a better staff management due to time savings during the winter operations in the vineyard and a global increase of the economic value of the production.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Thierry DUFOURCQ1,2, Elodie GASSIOLLE1, Denis CABOULET3, Thierry GRIMAL4, Bernard GENEVET6, Nathalie GOMA-FORTIN6, Christophe GAVIGLIO2

1 IFV Sud-Ouest, Château de Mons, 32100 Caussens, France
2 IFV Sud-Ouest, V’innopôle, 81 310 Lisle Sur Tarn, France
3 IFV Rhône-Méditerranée, Domaine de Pech Rouge, 11430 Gruissan, France.
4 Chambre d’Agriculture de l’Aude, Domaine de Cazes, 11240 Alaigne, France
5 Chambre d’Agriculture du Gard, Mas des Abeilles, 30900 Nîmes, France
6 Chambre d’Agriculture de l’Hérault, Mas de Saporta, 34970 Lattes, France

Contact the author

Keywords

survey, mechanical pruning, minimal pruning, southern France vineyard

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Agri-photovoltaics: first experience above Riesling vines

Agri-photovoltaics (apv) describes the dual use of an agricultural area for food production and solar power generation. There are already a number of systems in operation around the world with various crops and under a wide range of different set-ups. In large parts, they still allow mechanical cultivation and other positive side effects of an APV system were observed in addition to the increase in utilization in the form of electricity and food: effects on the water balance and passive protection against extreme weather events.

Climate change projections to support the transition to climate-smart viticulture

The Earth’s system is undergoing major changes through a wide range of spatial and temporal scales as a response to growing anthropogenic radiative forcing, which is pushing the whole system far beyond its natural variability. Sources of greenhouse gases largely exceed their sinks, thus leading to a strengthened greenhouse effect. More energy is thereby being supplied to the system, with inevitable shifts in climatic patterns and weather regimes. Over the last decades, these modifications have been manifested in the full statistical distributions of the atmospheric variables, with dramatic changes in the frequency and intensity of extremes. Natural hazards, such as severe droughts, floods, forest fires, or heatwaves, are being triggered by extreme atmospheric events worldwide, thus threatening human activities. Viticultculture is not only exposed to changing climates but is also highly vulnerable, as grapevine phenology and physiological development are strongly controlled by atmospheric conditions. Therefore, the assessment of climate change projections for a given region is critical for climate change adaptation and risk reduction in viticulture. By adopting timely and suitable measures, the future sustainability and resiliency of the sector can be fostered. Climate-grapevine chain modelling is an essential tool for better planning and management. However, the accuracy of the resulting projections is limited by many uncertainties that must be duly taken into account when transferring knowledge to stakeholders and decision-makers. Climate-smart viticulture will comprise ensembles of locally tuned strategies, envisioning both adaptation and mitigation, assisted by emerging technologies and decision-support systems.

Physiological response to drought and heat stress in the leaves of table grape varieties

Increasingly pronounced climate changes, including prolonged drought periods, pose a significant challenge to the cultivation of table grape varieties.

Studying PIWIs in three dimensions: agronomic, economic and ecological evaluation of 14 fungus-tolerant cultivars in Luxembourg

Growing fungus-tolerant cultivars (PIWIs) reduces the need of fungicide use by 50-80 %. PIWIs have the potential to address climate change adaptation and mitigation simultaneously.

Deciphering the color of rosé wines using polyphenol targeted metabolomics

The color of rosés wines is extremely diverse and a key element in their marketing. It is due to the presence of red anthocyanins extracted from grape skins and pigments formed from them and other wine constituents during wine-making.