GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Survey assessing different practices for mechanical winter pruning in Southern France vineyards

Survey assessing different practices for mechanical winter pruning in Southern France vineyards

Abstract

Context and purpose of the study – Winter pruning is today the longest operation for hand workers in the vineyard. Over the last years, mechanical pruning practices have become popular in southern France vineyards to respond to competitiveness issue especially for the basic and mid-range wine production. Wine farmers have developed different vineyard management techniques associated with mechanical winter pruning. They sought to be precise or not to control the buds number per vine. They maintained the vertical trellis system or grew the vine on a free cordon. They transformed the vineyard in minimal pruning system. The purpose of this survey was to assess a state of the practices in southern France vineyards, around 255 000 ha, which 2/3 are producing basic and mid-range wines.

Material and methods –  The survey was built on two steps. The first one was a qualitative follow-up with individual interviews on targeted winegrowers or cooperative’s technical managers who have been leaders in mechanical winter pruning development. These interviews allowed to build the second step survey. This second step consisted in a quantitative approach with an online questionnaire for winegrowers. It was composed by 43 to 63 closed-ended questions, with different fields such as farm characteristics, vineyard and soil management, vine-plot description and mechanical pruning operations. Statistical treatments were run with Addinsoft XLStat software.

Results – Results showed that there are three main mechanical pruning (mechaP) practices: a precise and a hedge mechaP, leaving lengths of branches respectively inferior or superior to 20 cm above the cordon line, and at last a minimal pruning system with few trimming operations on the canopy. Precise mechaP appears to be the most used technique with around 80% of the responses followed by the minimal pruning system, 15% of the responses, and the hedge mechaP with 5%. 56% of the estates are using mechanical pruning combined with trellised vertical shoot positioning (VSP) system, 22% with the free cordon system and 22% are using both systems.
Economic save is the main motivation to develop mechaP, due to the time save with winter pruning, followed by the difficulty to find handwork forces. The main gain observed by the producers due to mechaP is the increase and the regularity of the yield that impact positively the turnover per hectare. Finally, they consider that mechaP allows a better staff management due to time savings during the winter operations in the vineyard and a global increase of the economic value of the production.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Thierry DUFOURCQ1,2, Elodie GASSIOLLE1, Denis CABOULET3, Thierry GRIMAL4, Bernard GENEVET6, Nathalie GOMA-FORTIN6, Christophe GAVIGLIO2

1 IFV Sud-Ouest, Château de Mons, 32100 Caussens, France
2 IFV Sud-Ouest, V’innopôle, 81 310 Lisle Sur Tarn, France
3 IFV Rhône-Méditerranée, Domaine de Pech Rouge, 11430 Gruissan, France.
4 Chambre d’Agriculture de l’Aude, Domaine de Cazes, 11240 Alaigne, France
5 Chambre d’Agriculture du Gard, Mas des Abeilles, 30900 Nîmes, France
6 Chambre d’Agriculture de l’Hérault, Mas de Saporta, 34970 Lattes, France

Contact the author

Keywords

survey, mechanical pruning, minimal pruning, southern France vineyard

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Cumulative effect of deficit irrigation and salinity on vine responses

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen).

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

Genomic perspective of Lachancea thermotolerans in wine bioacidification

We have sequenced two commercial strains of Lachancea thermotolerans (Lt) from the company Lallemand: Laktia™ y Blizz™.

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).