GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Survey assessing different practices for mechanical winter pruning in Southern France vineyards

Survey assessing different practices for mechanical winter pruning in Southern France vineyards

Abstract

Context and purpose of the study – Winter pruning is today the longest operation for hand workers in the vineyard. Over the last years, mechanical pruning practices have become popular in southern France vineyards to respond to competitiveness issue especially for the basic and mid-range wine production. Wine farmers have developed different vineyard management techniques associated with mechanical winter pruning. They sought to be precise or not to control the buds number per vine. They maintained the vertical trellis system or grew the vine on a free cordon. They transformed the vineyard in minimal pruning system. The purpose of this survey was to assess a state of the practices in southern France vineyards, around 255 000 ha, which 2/3 are producing basic and mid-range wines.

Material and methods –  The survey was built on two steps. The first one was a qualitative follow-up with individual interviews on targeted winegrowers or cooperative’s technical managers who have been leaders in mechanical winter pruning development. These interviews allowed to build the second step survey. This second step consisted in a quantitative approach with an online questionnaire for winegrowers. It was composed by 43 to 63 closed-ended questions, with different fields such as farm characteristics, vineyard and soil management, vine-plot description and mechanical pruning operations. Statistical treatments were run with Addinsoft XLStat software.

Results – Results showed that there are three main mechanical pruning (mechaP) practices: a precise and a hedge mechaP, leaving lengths of branches respectively inferior or superior to 20 cm above the cordon line, and at last a minimal pruning system with few trimming operations on the canopy. Precise mechaP appears to be the most used technique with around 80% of the responses followed by the minimal pruning system, 15% of the responses, and the hedge mechaP with 5%. 56% of the estates are using mechanical pruning combined with trellised vertical shoot positioning (VSP) system, 22% with the free cordon system and 22% are using both systems.
Economic save is the main motivation to develop mechaP, due to the time save with winter pruning, followed by the difficulty to find handwork forces. The main gain observed by the producers due to mechaP is the increase and the regularity of the yield that impact positively the turnover per hectare. Finally, they consider that mechaP allows a better staff management due to time savings during the winter operations in the vineyard and a global increase of the economic value of the production.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Thierry DUFOURCQ1,2, Elodie GASSIOLLE1, Denis CABOULET3, Thierry GRIMAL4, Bernard GENEVET6, Nathalie GOMA-FORTIN6, Christophe GAVIGLIO2

1 IFV Sud-Ouest, Château de Mons, 32100 Caussens, France
2 IFV Sud-Ouest, V’innopôle, 81 310 Lisle Sur Tarn, France
3 IFV Rhône-Méditerranée, Domaine de Pech Rouge, 11430 Gruissan, France.
4 Chambre d’Agriculture de l’Aude, Domaine de Cazes, 11240 Alaigne, France
5 Chambre d’Agriculture du Gard, Mas des Abeilles, 30900 Nîmes, France
6 Chambre d’Agriculture de l’Hérault, Mas de Saporta, 34970 Lattes, France

Contact the author

Keywords

survey, mechanical pruning, minimal pruning, southern France vineyard

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

ReGenWine: A transdisciplinary project to assess concepts in regenerative viticulture

Regenerative agriculture is a set of agricultural practices that focus on improving the health of the soil, increasing biodiversity, and enhancing ecosystem services.

The influence of RNAi-expressing rootstocks in controlling grey mold on grapevine cultivars

Worldwide, with an average of 6.7 million cultivated hectares, of which exclusively 51% in Europe (faostat, 2021), the production of table and wine grapes is a leading sector, with continued growth in Europe in the area devoted to vine cultivation. during the growing season, most of the plant organs can be susceptible to several fungal and oomycete diseases, leading to important economic losses and causing detrimental effects on fruit quality. the increasingly scarce availability of fungicidal products, often also related to their relative impact on the environment, coupled with the emergence of resistance in the pathogen to these products, make defence increasingly challenging.

About validation of a method for the determination of volatile compounds in spirituous beverages using contained ethanol as a reference substance

The paper proposes an algorithm for validating a modified internal standard method using ethyl alcohol contained in the test sample as a reference substance.

From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

Climate change is here. One of the main consequences is an increase in the frequency and severity of abiotic stresses which mostly occur in a combined manner. Grapevine, which grows in a large diversity of pedo-climatic conditions, has presumably evolved different mechanisms to allow this widespread adaptation. Harnessing the genetic diversity in these mechanisms will be central to the future of viticulture in many traditional wine growing areas. The interactions between the scion and the rootstock through grafting add an additional level of diversity and adaptive potential to explore.
At the physiological level, these mechanisms are related to processes such as root system development and functioning (water and nutrient uptake), interactions with the soil microbiome, gas exchange regulation, hydraulic properties along the soil-plant-atmosphere continuum, reserve storage, short and long distance signaling mechanisms and plasticity for some of these traits.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.