GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Survey assessing different practices for mechanical winter pruning in Southern France vineyards

Survey assessing different practices for mechanical winter pruning in Southern France vineyards

Abstract

Context and purpose of the study – Winter pruning is today the longest operation for hand workers in the vineyard. Over the last years, mechanical pruning practices have become popular in southern France vineyards to respond to competitiveness issue especially for the basic and mid-range wine production. Wine farmers have developed different vineyard management techniques associated with mechanical winter pruning. They sought to be precise or not to control the buds number per vine. They maintained the vertical trellis system or grew the vine on a free cordon. They transformed the vineyard in minimal pruning system. The purpose of this survey was to assess a state of the practices in southern France vineyards, around 255 000 ha, which 2/3 are producing basic and mid-range wines.

Material and methods –  The survey was built on two steps. The first one was a qualitative follow-up with individual interviews on targeted winegrowers or cooperative’s technical managers who have been leaders in mechanical winter pruning development. These interviews allowed to build the second step survey. This second step consisted in a quantitative approach with an online questionnaire for winegrowers. It was composed by 43 to 63 closed-ended questions, with different fields such as farm characteristics, vineyard and soil management, vine-plot description and mechanical pruning operations. Statistical treatments were run with Addinsoft XLStat software.

Results – Results showed that there are three main mechanical pruning (mechaP) practices: a precise and a hedge mechaP, leaving lengths of branches respectively inferior or superior to 20 cm above the cordon line, and at last a minimal pruning system with few trimming operations on the canopy. Precise mechaP appears to be the most used technique with around 80% of the responses followed by the minimal pruning system, 15% of the responses, and the hedge mechaP with 5%. 56% of the estates are using mechanical pruning combined with trellised vertical shoot positioning (VSP) system, 22% with the free cordon system and 22% are using both systems.
Economic save is the main motivation to develop mechaP, due to the time save with winter pruning, followed by the difficulty to find handwork forces. The main gain observed by the producers due to mechaP is the increase and the regularity of the yield that impact positively the turnover per hectare. Finally, they consider that mechaP allows a better staff management due to time savings during the winter operations in the vineyard and a global increase of the economic value of the production.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Thierry DUFOURCQ1,2, Elodie GASSIOLLE1, Denis CABOULET3, Thierry GRIMAL4, Bernard GENEVET6, Nathalie GOMA-FORTIN6, Christophe GAVIGLIO2

1 IFV Sud-Ouest, Château de Mons, 32100 Caussens, France
2 IFV Sud-Ouest, V’innopôle, 81 310 Lisle Sur Tarn, France
3 IFV Rhône-Méditerranée, Domaine de Pech Rouge, 11430 Gruissan, France.
4 Chambre d’Agriculture de l’Aude, Domaine de Cazes, 11240 Alaigne, France
5 Chambre d’Agriculture du Gard, Mas des Abeilles, 30900 Nîmes, France
6 Chambre d’Agriculture de l’Hérault, Mas de Saporta, 34970 Lattes, France

Contact the author

Keywords

survey, mechanical pruning, minimal pruning, southern France vineyard

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Permanent vs temporary cover crops in a Sangiovese vineyard: preliminary results on vine physiology and productive traits

Cover crops in vineyards have been extensively studied, as the choice of grass species and their management significantly influence soil properties and vine performance.

Observatoire Grenache en vallée du Rhône : démarche et premiers résultats après une année d’étude

Face à l’enjeu d’affirmer et de mieux comprendre la spécificité des vins en relation avec leur origine, la notion de « terroir », avec la richesse de sens et la diversité des perspectives qui l’éclairent, se révèle la clef de voûte de la production et de la valorisation de vins personnalisés et typiques. Asseoir la connaissance des principaux terroirs de la Vallée du Rhône sur des bases autres que celles, jusqu’alors essentiellement empiriques, invoquées dans la seconde grande région française productrice de vins d’AOC, constitue un projet conforme à l’intérêt voué à cet enjeu d’actualité.

Influence of Potential Alcohol and pH Adjustment on Polyphenols and Sensory Characteristics of Red Wines Produced at Different Harvest Time Points

Wine quality is influenced by grape maturity, typically monitored by measuring sugar content and acidity.

Study of the interactions between wine anthocyanins and proline rich proteins

The interaction between tannins and salivary proteins is considered to be the basis of the phenomenon of wine astringency. Recently, some authors have revealed that some anthocyanins can also contribute to this mouthfeel sensation by interacting with proline rich proteins (PRPs). However, more studies are needed in order to elucidate the affinity of anthocyanins with these proteins.

An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

Climate influence on grapevine physiology is prevalent and this influence is only expected to increase with climate change. Although governed by a general determinism, climate influence on grapevine physiology may present variations according to the terroir. In addition, these site-specific differences are likely to be enhanced when climate influence is studied using farm data. Indeed, farm data integrate additional sources of variation such as a varying representativity of the conditions actually experienced in the field. Nevertheless, there is a real challenge in valuing farm data to enable grape growers to understand their own terroir and consequently adapt their practices to the local conditions. In such a context, this article proposes a framework to site-specifically study climate influence on grapevine physiology using farm data. It focuses on improving the analysis of time series of weather data. The analytical framework includes the synchronization of time series using site-specific thermal indices computed with an original method called Extended Growing Degree Days (eGDD). Synchronized time series are then analyzed using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS) in order to detect site-specific periods of strong climate influence on yield development. The article focuses on temperature and rain influence on grape yield development as a case study. It uses data from three commercial vineyards respectively situated in the Bordeaux region (France), California (USA) and Israel. For all vineyards, common periods of climate influence on yield development were found. They corresponded to already known periods, for example around veraison of the year before harvest. However, the periods differed in their precise timing (e.g. before, around or after veraison), duration and correlation direction with yield. Other periods were found for only one or two vineyards and/or were not referred to in literature, for example during the winter before harvest.