Grape texture characteristics are linked to one major qtl

Abstract

AIM: Berry texture and berry skin mechanical properties have high agronomic importance, related to quality and marketing requirements of wine, table and raisin grapes. Despite the efforts already made to detect molecular markers and candidate genes associated with berry texture, different QTLs were proposed until now, showing low contribution rates to the trait, likely due to difficulty in phenotyping. Searching for QTLs linked to berry texture, an F1 population of 154 individuals and their parents (‘Raboso Veronese’ and ‘Sultanina’) were used in this study.

METHODS: Density sorting by flotation was applied to reduce sample variability. One density class was selected achieving berries with a similar ripening stage. Mechanical properties were measured and normalized on berry diameter, surface, and volume. Hundred and ninety SSR molecular markers were used to produce a genetic map using JoinMap. MapQTL was applied searching for QTLs associated with berry texture traits. VviAGL11 expression profiling and co-expression analysis during grape ripening was evaluated using available transcriptomic datasets.

RESULTS: A major QTL was found on LG 18, with high LOD scores (from 25.07 to 31.92) and high phenotypic variance explained (from 53.2 to 63.5%) for all measured texture traits. Surprisingly, this major QTL showed association with SSR markers linked to VviAGL11, the main gene leading to stenospermocarpy. Data available on VviAGL11 expression and co-expression profiling during grape ripening strongly suggested that this gene may act on the traits of a ripe berry through the activation of some target genes involved in lipid and hormone metabolism, transport and in gene expression regulation.

CONCLUSIONS

Previous studies showed how difficult is determining the genetic control of berry texture. Our results clearly underline the major role played by a QTL located on LG18 and characterized by the presence of the well-known MADS-box gene VviAGL11.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Manna Crespan

CREA Research Centre of Viticulture and Enology, Conegliano, Italy,Daniele Migliaro, CREA Research Centre of Viticulture and Enology, Conegliano, Italy Silvia Vezzulli, Fondazione Edmund Mach, S. Michele a/Adige, Trento, Italy Sara Zenoni, University of Verona, Italy Giovanni Battista Tornielli, University of Verona, Italy Simone Giacosa, University of Torino, Italy Maria Alessandra Paissoni, University of Torino, Italy Susana Río Segade, University of Torino, Italy Luca Rolle, University of Torino, Italy

Contact the author

Keywords

Vitis vinifera L., fruit quality, flotation, lg18, vviagl11, mads box genes

Citation

Related articles…

Soil management of interrow spacing as an important factor to protect the vineyard soils from runoff and erosion under the Mediterranean climate

Nearly one third of the Herault vineyard (south of France) is planted on soils very sensitive to water runoff and erosion

Estimation of plant hydraulics of grapevine in various «terroirs» in the Canton of Vaud (Switzerland)

The study of the physiological behaviour of the grapevine (cv. Chasselas), and of plant hydraulics in particular, was conducted on various « terroirs » in the Canton of Vaud (Switzerland) between 2001 and 2003 by Agroscope Changins-Wädenswil ACW, in collaboration with the firm I. Letessier (SIGALES) in Grenoble and the Federal Polytechnic School of Lausanne (EPFL). An evaluation of the vine plant hydraulics was made by means of physiological indicators (leaf and stem water potentials, transpiration and leaf stomatal conductance, carbon isotope discrimination and a model of transpirable soil water), in relation to estimations of the soil water reservoir and climatic factors.

Detection of spider mite using artificial intelligence in digital viticulture

Aim: Pests have a high impact on yield and grape quality in viticulture. An objective and rapid detection of pests under field conditions is needed. New sensing technologies and artificial intelligence could be used for pests detection in digital viticulture. The aim of this work was to apply computer vision and deep learning techniques for automatic detection of spider mite symptoms in grapevine under field conditions. 

Measuring elemental sulfur in grape juice in relation to varietal thiol formation in Sauvignon blanc wines.

Aim: Sauvignon blanc displays a range of styles that can include prominent tropical and passionfruit aromas. Both sensory evaluation and chemical analysis have confirmed the above-average presence of ‘varietal thiols’ in the Sauvignon blanc wines from Marlborough, New Zealand.

Can varietal ‘apricot’ aroma of Viognier wine be controlled with clonal selection and harvest timing?

Recent wine-like reconstitution sensory studies confirmed that several monoterpenes were the key aroma compounds in the perception of an ‘apricot’ aroma attribute in Viognier wine.