GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Assessing reserve nitrogen at dormancy for predicting spring nitrogen status in Chardonnay grapevines

Assessing reserve nitrogen at dormancy for predicting spring nitrogen status in Chardonnay grapevines

Abstract

Context and purpose of the study – Nitrogen (N) supply strongly influences vine productivity and berry composition, matching availability and uptake requirements of vines during the growing season is essential to optimize vine nutrition. The nutritional status of grapevines is commonly assessed by the determination of petiole nutrient concentrations at flowering. The reserve N could also be an earlier indicator for grapevine N status, this work aimed to assess how the petiole levels relate to these perennial N reserves.

Material and methods – Five Chardonnay vineyards were planted two years prior and one Riverina vineyard 10 years prior to study commencement. The N levels in various perennial tissues and in the petioles at flowering were determined in these vineyards; vine productivity and berry ripeness were also assessed.

Results – The application of N fertiliser generally increased petiole N levels at bloom, the winter N reserves in root and spur tissues had a strong relationship with spring N status. A spur N concentration between 0.3 to 0.4 % and root N concentrations of 1.0 % relating to the lower value of the adequate range in the petiole at flowering (0.8 %). The determination of root and spur N during dormancy could assist in assessing N status, allowing for adjustment of N supply earlier in the season, prior to petiole levels at flowering are determined. However, it would be expected that the uptake between burst and flowering will alter petiole levels, which would be influenced by N fertiliser applications and by soil processes that are influenced by soil temperature and moisture.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Bruno HOLZAPFEL1 ,2* and Jason SMITH1

1 National Wine and Grape Industry Centre, Wagga Wagga, New South Wales 2678, Australia
2 New South Wales Department of Primary Industries, Wagga Wagga, New South Wales 2678, Australia

Contact the author

Keywords

Nutrient status, nitrogen, requirements, reserves

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Drought tolerance of varieties in semi-arid areas: can the behavior of Tempranillo be improved by varieties of its own lineage?

Tempranillo is the most widely grown red grapevine variety in Spain, currently representing 42% of the total number of red varieties and 21% of the total vineyard area. Due to the economic importance that this variety represents in Spanish viticulture, in some areas where it is traditionally grown, there is a special concern about the viability of the future growing of this variety is being compromised by the climate change effects.

Applications of Infrared Spectroscopy from laboratory to industry

The grape and wine industries have long sought rapid, reliable and cost-effective methods to screen and monitor all the stages of the winemaking process, which include grape ripening in the vineyard, harvest and grape reception at the weighbridge, the fermentation stage and the bottling of the final product.

Projected changes of grapevine phenology in Belgian and South African vineyards under climate change scenarios

The concept of ‘terroir’ describes the interplay of the environmental factors that affect the grapevine. This includes but is not limited to climate, soil composition, vineyard management, topography, and geology.

Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

AIM: A genetic study of four wine T. delbrueckii strains was done. Spore clones free of possible recessive growth‐retarding alleles with enhanced resistance to winemaking stressing conditions were obtained from these yeasts. METHODS: The genetic marker of resistance to cycloheximide (cyhR) allows easy monitoring of the new mutants obtained from these yeasts.