GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Assessing reserve nitrogen at dormancy for predicting spring nitrogen status in Chardonnay grapevines

Assessing reserve nitrogen at dormancy for predicting spring nitrogen status in Chardonnay grapevines

Abstract

Context and purpose of the study – Nitrogen (N) supply strongly influences vine productivity and berry composition, matching availability and uptake requirements of vines during the growing season is essential to optimize vine nutrition. The nutritional status of grapevines is commonly assessed by the determination of petiole nutrient concentrations at flowering. The reserve N could also be an earlier indicator for grapevine N status, this work aimed to assess how the petiole levels relate to these perennial N reserves.

Material and methods – Five Chardonnay vineyards were planted two years prior and one Riverina vineyard 10 years prior to study commencement. The N levels in various perennial tissues and in the petioles at flowering were determined in these vineyards; vine productivity and berry ripeness were also assessed.

Results – The application of N fertiliser generally increased petiole N levels at bloom, the winter N reserves in root and spur tissues had a strong relationship with spring N status. A spur N concentration between 0.3 to 0.4 % and root N concentrations of 1.0 % relating to the lower value of the adequate range in the petiole at flowering (0.8 %). The determination of root and spur N during dormancy could assist in assessing N status, allowing for adjustment of N supply earlier in the season, prior to petiole levels at flowering are determined. However, it would be expected that the uptake between burst and flowering will alter petiole levels, which would be influenced by N fertiliser applications and by soil processes that are influenced by soil temperature and moisture.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Bruno HOLZAPFEL1 ,2* and Jason SMITH1

1 National Wine and Grape Industry Centre, Wagga Wagga, New South Wales 2678, Australia
2 New South Wales Department of Primary Industries, Wagga Wagga, New South Wales 2678, Australia

Contact the author

Keywords

Nutrient status, nitrogen, requirements, reserves

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

How a microscopic yeast makes a big difference – how geographic limitations of yeast populations can determine the regional aroma of wine

Aim: Microbial biogeography contributes to regional distinctiveness of agricultural products and is important to determine for quality and marketing of wine products. We evaluated the microbial influence on wine characteristics by considering the microbial diversity of soil, plant, grapes, must and wine in grapegrowing regions across Victoria, Australia. 

The use of zirconia dioxide enclosed in a metallic cage for the stabilisation of Chardonnay white wine

White wines are commonly stabilised by removing the heat unstable proteins through adsorption by bentonite, an effective but inefficient wine processing step. Alternative absorbents are thus sought and zirconium dioxide (zirconia) is recognised as a promising candidate.

A.O.C. taureau de Camargue

A.O.C. réservée aux viandes fraîches de bovins mâles ou femelles, nés, élevés et abattus dans une aire géographique définie (voir carte)

The vineyard of the future: producing more with less  

similar to other agricultural producers, grape growers face increasing pressure to improve productivity and production efficiency while reducing their environmental impact. Threats due to extreme climate events, as well as the uncertainty of available water and labor, provide significant challenges to the future of grape production. This presentation will provide an integrated overview of the tools and technologies being developed to address these issues and to help growers manage vineyards in the future, including vineyard design, remote and proximal sensing, automation, data management and decision support systems, and germplsm improvement. The potential impact of these advancements on vineyard productivity, fruit quality, and sustainability will be discussed.

Monitoring small-scale alcoholic fermentations using a portable FTIR-ATR spectrometer and multivariate analysis

Although some wine production processes still rely on post-production evaluation and off-site laboratory analysis, the new winemaking industry is aware of a need for a better knowledge of the process to improve the properties of the final product. Thus, more and more wineries are interested in incorporating quality-by-design (QbD) strategies instead of postproduction testing because of the possibility to early detect deviations in fermentation or any other wine process. This would allow to detect unwanted situations and eventually to ‘readjust’ the process, thus minimizing rejects.