GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Assessing reserve nitrogen at dormancy for predicting spring nitrogen status in Chardonnay grapevines

Assessing reserve nitrogen at dormancy for predicting spring nitrogen status in Chardonnay grapevines

Abstract

Context and purpose of the study – Nitrogen (N) supply strongly influences vine productivity and berry composition, matching availability and uptake requirements of vines during the growing season is essential to optimize vine nutrition. The nutritional status of grapevines is commonly assessed by the determination of petiole nutrient concentrations at flowering. The reserve N could also be an earlier indicator for grapevine N status, this work aimed to assess how the petiole levels relate to these perennial N reserves.

Material and methods – Five Chardonnay vineyards were planted two years prior and one Riverina vineyard 10 years prior to study commencement. The N levels in various perennial tissues and in the petioles at flowering were determined in these vineyards; vine productivity and berry ripeness were also assessed.

Results – The application of N fertiliser generally increased petiole N levels at bloom, the winter N reserves in root and spur tissues had a strong relationship with spring N status. A spur N concentration between 0.3 to 0.4 % and root N concentrations of 1.0 % relating to the lower value of the adequate range in the petiole at flowering (0.8 %). The determination of root and spur N during dormancy could assist in assessing N status, allowing for adjustment of N supply earlier in the season, prior to petiole levels at flowering are determined. However, it would be expected that the uptake between burst and flowering will alter petiole levels, which would be influenced by N fertiliser applications and by soil processes that are influenced by soil temperature and moisture.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Bruno HOLZAPFEL1 ,2* and Jason SMITH1

1 National Wine and Grape Industry Centre, Wagga Wagga, New South Wales 2678, Australia
2 New South Wales Department of Primary Industries, Wagga Wagga, New South Wales 2678, Australia

Contact the author

Keywords

Nutrient status, nitrogen, requirements, reserves

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effects of different organic amendments on soil, vine, grape and wine, in a long-term field experiment in Chinon vineyard (France)

In a long-term experiment carried out in Chinon vineyard (37, France) during 23 years, the effects of several organic amendments were studied on soil, vine, grapes and wine. Four main treatments were compared on a calcareous sandy soil: control without organic amendment, dry crushed pruning wood at 2.1.t-1.ha-1.year-1 (D1), cow manure at 10 t-1. ha-1.year-1 (D1) and cow manure applied at 20 t-1.ha-1.year-1 (D2). D1 levels were calculated to fill the annual humus losses by mineralization.

Use of minority grape varieties to mitigate climate change and achievement of balanced wines in Castilla y León (Spain)

Castilla y León is the third longest region in the European Union, having more than 85.000 vineyard hectares.

Polyphenol content examination of Tokaji Aszú wines

We must state that two conditions above are only prevalent in the case when the processed grapes are full or over ripened, besides following the Tokaj wines preparation criterions (grape variety, soil, microclimate, vintage, etc.). These two conditions mentioned before were followed up only sensory based analysis up to now, altough the study of chemical idetified compounds which confirms these are obviuos.

Bioanalytical workflow for exploring the chemical diversity and antioxidant capacity of grape juice peptides

The oxidative stability of white wines is related to a flow of chemical reactions involving a number of native wine containing compounds composing their antioxidant metabolome.

Effect of stilbenes on malolactic fermentation performance of onoccocus oeni and lactiplantibacillus plantarum strains in wine production

Malolactic fermentation (MLF) is an important step in winemaking to improve wine quality through deacidification, increased microbial stability, and altered wine flavor. The phenolic composition of wine influences the growth and metabolism of lactic acid bacteria (lab) used for MLF.