GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Assessing reserve nitrogen at dormancy for predicting spring nitrogen status in Chardonnay grapevines

Assessing reserve nitrogen at dormancy for predicting spring nitrogen status in Chardonnay grapevines

Abstract

Context and purpose of the study – Nitrogen (N) supply strongly influences vine productivity and berry composition, matching availability and uptake requirements of vines during the growing season is essential to optimize vine nutrition. The nutritional status of grapevines is commonly assessed by the determination of petiole nutrient concentrations at flowering. The reserve N could also be an earlier indicator for grapevine N status, this work aimed to assess how the petiole levels relate to these perennial N reserves.

Material and methods – Five Chardonnay vineyards were planted two years prior and one Riverina vineyard 10 years prior to study commencement. The N levels in various perennial tissues and in the petioles at flowering were determined in these vineyards; vine productivity and berry ripeness were also assessed.

Results – The application of N fertiliser generally increased petiole N levels at bloom, the winter N reserves in root and spur tissues had a strong relationship with spring N status. A spur N concentration between 0.3 to 0.4 % and root N concentrations of 1.0 % relating to the lower value of the adequate range in the petiole at flowering (0.8 %). The determination of root and spur N during dormancy could assist in assessing N status, allowing for adjustment of N supply earlier in the season, prior to petiole levels at flowering are determined. However, it would be expected that the uptake between burst and flowering will alter petiole levels, which would be influenced by N fertiliser applications and by soil processes that are influenced by soil temperature and moisture.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Bruno HOLZAPFEL1 ,2* and Jason SMITH1

1 National Wine and Grape Industry Centre, Wagga Wagga, New South Wales 2678, Australia
2 New South Wales Department of Primary Industries, Wagga Wagga, New South Wales 2678, Australia

Contact the author

Keywords

Nutrient status, nitrogen, requirements, reserves

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effect of bleaching with different agents on protein hydrolysate characteristics

High temperatures can reduce the phenolic content of grapes, especially anthocyanins and copigments involved in colour stabilisation of red wines [1]. This could make it difficult to maintain stable colour during storage [2].

“Zonation”: interpretation and estimation of “Great zonation” (GZ) following the base methodology of “GRANDE FILIERA” (GF) (Great chain)

Dans des travaux précédents sur le zonage, on a traité de la « Grande Filière », du « terroir », du « territoire », de la «″Terra »″ (« Terre »”), des « Petits zonages ou sub-zonages », du « Grand Zonage », de la qualité (nous en avons classifié plus de quatre-vingt-dix), des « Grands Objectifs » (GO) de l’activité vitivinicole et des moyens utilisés pour les atteindre. Dans le « GRAND ZONAGE » (GZ) nous avons précisé que pour zoner, nous partons des aspects

Appliance of climate projections for climate change study in Serbian vineyard regions

Climate projections considered here are for two periods in the future throughout two IPCC scenarios: 2001 – 2030 (A1B) and 2071 – 2100 (A2) obtained using Coupled Regional Climate

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform.