GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The effect of management practices and landscape context on vineyard biodiversity

The effect of management practices and landscape context on vineyard biodiversity

Abstract

Context and purpose of the study – Intensification is considered one of the major drivers of biodiversity loss in farmland. The more intensive management practices that have been adopted the last decades, contributed to species declines from all taxonomic groups. Moreover, agricultural intensification has led to an important change of land use. Complex, mixed agro-ecosystems with cultivated and non-cultivated habitats have been converted to simplified, intensive and homogeneous ones with severe effects on biodiversity. The present study aimed at reviewing the most recent literature of the effects of agricultural practices and surrounding landscape on biodiversity in Mediterranean vineyards.

Material and methods – Several scientific papers and research projects, studying the effects of managements practices and landscape on vineyard biodiversity and the methods already used to assess and moderate species decline, were reviewed.

Results – Tillage, irrigation, pesticide and fertilizer use as well as the destruction of the natural vegetation in hedgerows and field margins are some of the agricultural practices that are responsible for most declines in species richness. In addition to management practices, a higher or lower landscape heterogeneity provides a higher or lower probability for the species to find food resources, shelter or sites for reproduction, over-wintering or oviposition. A plethora of metrics have been developed to quantify landscape and measure the landscape heterogeneity. The development of a biodiversity metric tool that quantifies and evaluates the effect of vineyard management practices is crucial to help farmers to choose the most sustainable option that will benefit both biodiversity and production.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Athanasia MANDOULAKI¹, Ioannis VOGIATZAKIS2, Menelaos STAVRINIDES1*

Cyprus University of Technology, 3036 Limassol, Cyprus
2 Open University of Cyprus, 2252 Nicosia, Cyprus

Contact the author

Keywords

vineyard, intensification, biodiversity, management practices, landscape, biodiversity metric

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Relationships between vine isohydricity and changes of fruit growth and metabolism during water deficit

The frequency of water deficits is increasing in many grape-growing regions due to climate change.

A pragmatic modeling approach to assessing vine water status

Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species.

Vitamins in musts : an unexplored field

Vitamins are major compounds, involved in several prime yeast metabolic pathways. Yet, their significance in oenology has remained mostly unexplored for several decades and our current knowledge on the matter still remaining obscure to this day. While the vitaminic contents of grape musts have been approached in these ancient investigation

Volatile organic compounds: a role in elicitor-induced resistance of grapevine against pathogens?

As Vitis vinifera varieties are susceptible to fungal diseases, numerous chemical treatments are generally required to ensure the quantity and quality of the harvest. However, in the context of sustainable viticulture, there are increasing societal request, political incitation, and winegrowers’ awareness to reduce the use of pesticides.

Identifying best parameters to characterize genotypes capability of retaining adequate malic acid at harvest and in final wines

Under current climate change pressures, obtaining grapes with adequate acidity at harvest is one of the main challenges for growers, especially if the goal is producing sparkling wines. This issue arises from two main occurrences: i) higher temperatures enhance degradation of malic acid; ii) grape maturity may occur under suboptimal climatic conditions due to an advanced phenology.