GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The effect of management practices and landscape context on vineyard biodiversity

The effect of management practices and landscape context on vineyard biodiversity

Abstract

Context and purpose of the study – Intensification is considered one of the major drivers of biodiversity loss in farmland. The more intensive management practices that have been adopted the last decades, contributed to species declines from all taxonomic groups. Moreover, agricultural intensification has led to an important change of land use. Complex, mixed agro-ecosystems with cultivated and non-cultivated habitats have been converted to simplified, intensive and homogeneous ones with severe effects on biodiversity. The present study aimed at reviewing the most recent literature of the effects of agricultural practices and surrounding landscape on biodiversity in Mediterranean vineyards.

Material and methods – Several scientific papers and research projects, studying the effects of managements practices and landscape on vineyard biodiversity and the methods already used to assess and moderate species decline, were reviewed.

Results – Tillage, irrigation, pesticide and fertilizer use as well as the destruction of the natural vegetation in hedgerows and field margins are some of the agricultural practices that are responsible for most declines in species richness. In addition to management practices, a higher or lower landscape heterogeneity provides a higher or lower probability for the species to find food resources, shelter or sites for reproduction, over-wintering or oviposition. A plethora of metrics have been developed to quantify landscape and measure the landscape heterogeneity. The development of a biodiversity metric tool that quantifies and evaluates the effect of vineyard management practices is crucial to help farmers to choose the most sustainable option that will benefit both biodiversity and production.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Athanasia MANDOULAKI¹, Ioannis VOGIATZAKIS2, Menelaos STAVRINIDES1*

Cyprus University of Technology, 3036 Limassol, Cyprus
2 Open University of Cyprus, 2252 Nicosia, Cyprus

Contact the author

Keywords

vineyard, intensification, biodiversity, management practices, landscape, biodiversity metric

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Efectos del deshojado y de su combinación con el aclareo de Racimos en los componentes básicos de la producción y del Mosto, sobre cv. Tempranillo en la D.O. Ribera del Duero

Las técnicas de manejo del canopy de la vid pueden favorecer la adaptación de los sistemas de conducción a diversas condiciones de cultivo para obtener uva de calidad.

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.

Monitoring of alcoholic fermentation: development of an applicable in-line system

Alcoholic fermentation plays a crucial role in the winemaking process. In addition to producing ethanol, it results in the formation of various secondary metabolites that significantly influence the wine’s characteristics.

Towards a European data basis based of advanced multi-isotopic signatures and artificial intelligence: the wine in blue project

Major and trace elements are essential for the development of grapes used for the wine. They are primarily originating from the soil. Some elements are also seldomly added during the wine making process. Therefore, the largest spectrum of major, trace and ultra-trace elements in the final wine product is a good signature of its geographical origin. In the frame of the European tracewindu, we have developed a very original multi-isotopic dilution method using triple quadrupole icp/ms.