GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Impact of crop load management on terpene content in gewürztraminer grapes

Impact of crop load management on terpene content in gewürztraminer grapes

Abstract

Context and purpose of the study ‐ Crop load management by cluster thinning can improve ripening and the concentration of key metabolites for grape and wine quality. However, little work has been done on testing the impact of crop load management on terpene content of white grapes. The goal of the study was to assess if by reducing crop load via cluster thinning growers can increase terpene concentration of grapes, as well as to test if the timing of thinning application affects terpene concentration.

Material and methods ‐ This study was performed in 2016, 2017, and 2018 in Oliver, British Columbia. Field‐grown Gewürztraminer vines were cluster‐thinned at two developmental stages, just after fruit‐set (Early Thinning) and at veraison (Late Thinning), in order to target three crop levels: Light Crop (7 tons/ha), Moderate Crop (10.5 tons/ha), and High Crop (14 tons/ha). Treatments were replicated on five plots arranged in a randomized block design. The effect of treatments on leaf gas exchanges, vine leaf area, and berry sugar (total soluble solid, TSS), acid (titratable acidity, TA), and terpene concentration was analyzed during ripening and at harvest. Free and glycosylated terpenes were identified and quantified using a SPME‐GC‐MS and a LI‐GC‐MS, respectively.

Results ‐ Crop level treatmentsdid not affect leaf gas exchanges and vine leaf area. TSS concentration during ripening and at harvest was higher in Light Crop and Moderate Crop treatments than in High Crop, particularly for Early Thinning treatments. High Crop and Light Crop‐Early Thinning determined the highest free terpene concentration at harvest; however, a significant interaction between treatment and year effects was observed. Total glycosylated terpenes at harvest were marginally affected by treatments (P = 0.063), and Light Crop‐Early Thinning determined the highest total glycosylated terpene concentration. Interestingly, total free terpenes were significantly affected by the treatments at the sampling before harvest (20‐21 Brix), when Light Crop‐Early Thinning determined a higher concentration of total free terpenes than High Crop. This result was consistently among the three years. Our study suggests that crop load management can be used as a tool to improve grape terpenes in scenarios (regions and/or seasons) where ripening is impaired and grapes cannot reach relatively high sugar levels. 

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Yevgen KOVALENKO, Ricco TINDJAU, Simone Diego CASTELLARIN

Wine Research Centre, The University of British Columbia, 2205 East Mall, Vancouver, BC, V6T0C1,Canada

Contact the author

Keywords

Aroma, Grapevine, Ripening, Thinning, Yield

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Application of new genomic technologies to improve the pathogen resistance of two local cultivars from Veneto region: Corvina and Garganega

Grapevine (Vitis spp.) is a globally significant fruit crop and enhancing its agronomic and oenological traits is crucial to meet changing agricultural conditions and consumer demands.

Sustainability as system innovation: sustainability as system innovation: a returnable system for glass wine bottles

Introduction increasing sustainability is essential and a societal challenge, requiring fundamental changes in behaviour and attitudes. This applies to both producers and consumers. For the wine industry in particular, such a change is a major challenge. An eip-agri research project is evaluating the introduction of a returnable glass system in the german wine industry as a key solution for increasing sustainability. Given the need for change associated with a returnable system, the project is theoretically grounded in systems innovation, as this approach provides solutions for complex, transformative change.

Chitosan treatment to manage grapevine downy mildew

Downy mildew is one of the most important grapevine diseases, caused by the Oomycete Plasmopara viticola. The management of the disease in organic agriculture can require up to 15 copper applications per year. However, copper accumulates in the soil, is phytotoxic and is toxic for organisms living in the soil, its use has been restricted in European Union to maximum 28 kg in 7 years. Therefore, testing of alternatives with equal effectiveness is desirable. Among those, the natural biopolymer chitosan, obtained from crab shells, proved to be effective toward downy mildew in plot experiments. The aim of our trials was to extend chitosan applications in large scale experiments in different years, cultivars and environmental conditions.