GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Impact of crop load management on terpene content in gewürztraminer grapes

Impact of crop load management on terpene content in gewürztraminer grapes

Abstract

Context and purpose of the study ‐ Crop load management by cluster thinning can improve ripening and the concentration of key metabolites for grape and wine quality. However, little work has been done on testing the impact of crop load management on terpene content of white grapes. The goal of the study was to assess if by reducing crop load via cluster thinning growers can increase terpene concentration of grapes, as well as to test if the timing of thinning application affects terpene concentration.

Material and methods ‐ This study was performed in 2016, 2017, and 2018 in Oliver, British Columbia. Field‐grown Gewürztraminer vines were cluster‐thinned at two developmental stages, just after fruit‐set (Early Thinning) and at veraison (Late Thinning), in order to target three crop levels: Light Crop (7 tons/ha), Moderate Crop (10.5 tons/ha), and High Crop (14 tons/ha). Treatments were replicated on five plots arranged in a randomized block design. The effect of treatments on leaf gas exchanges, vine leaf area, and berry sugar (total soluble solid, TSS), acid (titratable acidity, TA), and terpene concentration was analyzed during ripening and at harvest. Free and glycosylated terpenes were identified and quantified using a SPME‐GC‐MS and a LI‐GC‐MS, respectively.

Results ‐ Crop level treatmentsdid not affect leaf gas exchanges and vine leaf area. TSS concentration during ripening and at harvest was higher in Light Crop and Moderate Crop treatments than in High Crop, particularly for Early Thinning treatments. High Crop and Light Crop‐Early Thinning determined the highest free terpene concentration at harvest; however, a significant interaction between treatment and year effects was observed. Total glycosylated terpenes at harvest were marginally affected by treatments (P = 0.063), and Light Crop‐Early Thinning determined the highest total glycosylated terpene concentration. Interestingly, total free terpenes were significantly affected by the treatments at the sampling before harvest (20‐21 Brix), when Light Crop‐Early Thinning determined a higher concentration of total free terpenes than High Crop. This result was consistently among the three years. Our study suggests that crop load management can be used as a tool to improve grape terpenes in scenarios (regions and/or seasons) where ripening is impaired and grapes cannot reach relatively high sugar levels. 

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Yevgen KOVALENKO, Ricco TINDJAU, Simone Diego CASTELLARIN

Wine Research Centre, The University of British Columbia, 2205 East Mall, Vancouver, BC, V6T0C1,Canada

Contact the author

Keywords

Aroma, Grapevine, Ripening, Thinning, Yield

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Oligosaccharides from Vitis vinifera grape seeds: a focus on gentianose as a novel bioactive compound

AIM. Grape seeds (Vitis vinifera) are among the main constituents of grape pomace, also exploited in ingredients for nutraceutics and cosmeceutics, particularly regarding the phenolic fraction. The macromolecules of grape/wine include polyphenols, proteins and polysaccharides.

Identifying best parameters to characterize genotypes capability of retaining adequate malic acid at harvest and in final wines

Under current climate change pressures, obtaining grapes with adequate acidity at harvest is one of the main challenges for growers, especially if the goal is producing sparkling wines. This issue arises from two main occurrences: i) higher temperatures enhance degradation of malic acid; ii) grape maturity may occur under suboptimal climatic conditions due to an advanced phenology.

Impact of climate variability and change on grape yield in Italy

Viticulture is entangled with weather and climate. Therefore, areas currently suitable for grape production can be challenged by climate change. Winegrowers in Italy already experiences the effect of climate change, especially in the form of warmer growing season, more frequent drought periods, and increased frequency of weather extremes.
The aim of this study is to investigate the impact of climate variability and change on grape yield in Italy to provide winegrowers the information needed to make their business more sustainable and resilient to climate change. We computed a specific range of bioclimatic indices, selected by the International Organisation of Vine and Wine (OIV), and correlated them to grape yield data. We have worked in collaboration with some wine consortiums in northern and central Italy, which provided grape yield data for our analysis.
Using climate variables from the E-OBS dataset we investigate how the bioclimatic indices changed in the past, and the impact of this change on grape productivity in the study areas. The climate impact on productivity is also investigated by using high-resolution convection-permitting models (CPMs – 2.2 horizontal resolution), with the purpose of estimating productivity in future emission scenarios. The CPMs are likely the best available option for this kind of impact studies since they allow a better representation of small-scale processes and features, explicitly resolve deep convection, and show an improved representation of extremes. In our study, we also compare CPMs with regional climate models (RCMs – 12 km horizontal resolution) to assess the added value of high-resolution models for impact studies. Further development of our study will lead to assessing the future suitability for vine cultivation and could lead to the construction of a statistical model for future projection of grape yield.

Étude des potentialités des terroirs viticoles: une démarche globale en zone A.O.C. L’exemple des Côtes du Rhône

Depuis près d’une quinzaine d’années, l’Appellation d’Origine Contrôlée (A.O.C.) Côtes du Rhône a engagé un vaste programme afin de mieux connaître et valoriser les potentialités des différents terroirs qui la composent.

Les activités peroxidasiques du raisin de quelques cépages de Roumanie

Les enzymes d’oxydation (polyphénoloxydase, peroxydase) des raisins sont d’origine génétique dépendantes des facteurs climatiques et agrotechniques (Sapis et al, 1983). Dans le processus technologique de l’obtention du moût de raisins, ces enzymes catalysent l’oxydation de certains composés phénoliques naturellement présents dans le raisin, produisant ainsi des modifications indésirables de la couleur et de l’arôme du vin.