GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Impact of crop load management on terpene content in gewürztraminer grapes

Impact of crop load management on terpene content in gewürztraminer grapes

Abstract

Context and purpose of the study ‐ Crop load management by cluster thinning can improve ripening and the concentration of key metabolites for grape and wine quality. However, little work has been done on testing the impact of crop load management on terpene content of white grapes. The goal of the study was to assess if by reducing crop load via cluster thinning growers can increase terpene concentration of grapes, as well as to test if the timing of thinning application affects terpene concentration.

Material and methods ‐ This study was performed in 2016, 2017, and 2018 in Oliver, British Columbia. Field‐grown Gewürztraminer vines were cluster‐thinned at two developmental stages, just after fruit‐set (Early Thinning) and at veraison (Late Thinning), in order to target three crop levels: Light Crop (7 tons/ha), Moderate Crop (10.5 tons/ha), and High Crop (14 tons/ha). Treatments were replicated on five plots arranged in a randomized block design. The effect of treatments on leaf gas exchanges, vine leaf area, and berry sugar (total soluble solid, TSS), acid (titratable acidity, TA), and terpene concentration was analyzed during ripening and at harvest. Free and glycosylated terpenes were identified and quantified using a SPME‐GC‐MS and a LI‐GC‐MS, respectively.

Results ‐ Crop level treatmentsdid not affect leaf gas exchanges and vine leaf area. TSS concentration during ripening and at harvest was higher in Light Crop and Moderate Crop treatments than in High Crop, particularly for Early Thinning treatments. High Crop and Light Crop‐Early Thinning determined the highest free terpene concentration at harvest; however, a significant interaction between treatment and year effects was observed. Total glycosylated terpenes at harvest were marginally affected by treatments (P = 0.063), and Light Crop‐Early Thinning determined the highest total glycosylated terpene concentration. Interestingly, total free terpenes were significantly affected by the treatments at the sampling before harvest (20‐21 Brix), when Light Crop‐Early Thinning determined a higher concentration of total free terpenes than High Crop. This result was consistently among the three years. Our study suggests that crop load management can be used as a tool to improve grape terpenes in scenarios (regions and/or seasons) where ripening is impaired and grapes cannot reach relatively high sugar levels. 

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Yevgen KOVALENKO, Ricco TINDJAU, Simone Diego CASTELLARIN

Wine Research Centre, The University of British Columbia, 2205 East Mall, Vancouver, BC, V6T0C1,Canada

Contact the author

Keywords

Aroma, Grapevine, Ripening, Thinning, Yield

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Regulation of terpene production in methyl jasmonate treated cell-cultures

Terpenes are responsible for flavors and aromas of grapes, however, they also protect from radiation, participate in biotic stress and antioxidant mechanisms. The phytohormone methyl jasmonate (MeJA) mediates many of these stress responses and has been associated with increased terpene content in berries. Here, we generated transcriptomic data of Vitis vinifera cv. ‘Gamay’ cells treated with MeJA (100 μM) and cyclodextrins (50 μM) to understand these responses. Ontology analysis revealed that up-regulated genes (URGs) were enriched in jasmonic acid biosynthesis and signaling terms, as expected. Inspection of transcription factors (TFs) among URGs allowed us to study uncharacterized TFs.

Terroir effects on the response of Tempranillo grapevines to irrigation in four locations of Spain: agronomic performance and water relations

We report the effects of different drip irrigation treatments on the agronomic performance and water relations of Tempranillo grapevines, pruned to a bilateral cordon

Apports des mesures de résistivité électrique du sol dans les études sur le fonctionnement de la vigne et dans la spatialisation parcellaire

La mesure de la résistivité électrique des sols est une technique non destructive, spatialement intégrante, utilisée depuis peu en viticulture. L’utilisation d’appareils de mesures performant et de logiciels adaptés permet de traiter les données afin de pouvoir visualiser en deux ou trois dimensions les variations de textures ou d’humidité d’un sol.

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.