Macrowine 2021
IVES 9 IVES Conference Series 9 Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

Abstract

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol. The seeds, in addition to oil, contain approximately 60% of the polyphenols present in grape, in particular an high concentration of flavan-3-ols, catechin and epicatechin. Grape seed extracts are very potent antioxidants and exhibit numerous interesting pharmacologic activities The traditional extraction methods used for polyphenols from solid or semi-solid materials have been focused on methods, which use organic solvents. These methods are laborious and time consuming, promote degradation reactions, have low selectivity and/or low extraction yields. Moreover, these conventional techniques employ large amounts of toxic solvents. Some of these critical points could be over boost with Supercritical Fluid Extraction (SFE). The most used solvent in extraction with supercritical fluids is the CO2, which is economical, safe, non-toxic (it does not leave residues in extract) and reaches supercritical conditions easily (32°C and 74 bar). It is suitable for thermo-labile substances being the temperature of its critical point 32°C. In the supercritical phase it is selective towards apolar compounds or weakly polar, so it is necessary to add co-solvents (ethanol and water are the co-solvents used in food processing) in order to extract the polar compounds. Applying this technology the thermal and chemical degradation of the products, which are completely free from processing residues, is prevented, while the solvent power and selectivity can be easily adjusted from gas-like to liquid-like by changing the pressure and temperature of the extraction, making thus possible the fractionation of the extract. SFE is a Green Technology and this guarantees competitive advantage in conjunction with sustainable development. The extraction of phenolic compounds from grape marc using supercritical CO2 containing 15% ethanol–water mixture (57%, v/v) (EtW) as co-solvent, at 8, 10, 20 and 30 MPa/313.15 K suggested 8 MPa as the most suitable pressure. The evaluation of the ‘bioavailability’ of the grape-CO2 extracts so obtained was carried out . The ‘bioavailability’ is a key step in ensuring ‘bioefficacy’ of bioactive compounds when used as supplements because they need to be bioavailable in order to exert any beneficial effects on human health.

Publication date: April 4, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Carla Da Porto*, Andrea Natolino, Dario Vojnovic, Deborha Decorti

*University of Udine

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Analysis of peptide fraction from white wines

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)?

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.