Macrowine 2021
IVES 9 IVES Conference Series 9 Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

Abstract

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol. The seeds, in addition to oil, contain approximately 60% of the polyphenols present in grape, in particular an high concentration of flavan-3-ols, catechin and epicatechin. Grape seed extracts are very potent antioxidants and exhibit numerous interesting pharmacologic activities The traditional extraction methods used for polyphenols from solid or semi-solid materials have been focused on methods, which use organic solvents. These methods are laborious and time consuming, promote degradation reactions, have low selectivity and/or low extraction yields. Moreover, these conventional techniques employ large amounts of toxic solvents. Some of these critical points could be over boost with Supercritical Fluid Extraction (SFE). The most used solvent in extraction with supercritical fluids is the CO2, which is economical, safe, non-toxic (it does not leave residues in extract) and reaches supercritical conditions easily (32°C and 74 bar). It is suitable for thermo-labile substances being the temperature of its critical point 32°C. In the supercritical phase it is selective towards apolar compounds or weakly polar, so it is necessary to add co-solvents (ethanol and water are the co-solvents used in food processing) in order to extract the polar compounds. Applying this technology the thermal and chemical degradation of the products, which are completely free from processing residues, is prevented, while the solvent power and selectivity can be easily adjusted from gas-like to liquid-like by changing the pressure and temperature of the extraction, making thus possible the fractionation of the extract. SFE is a Green Technology and this guarantees competitive advantage in conjunction with sustainable development. The extraction of phenolic compounds from grape marc using supercritical CO2 containing 15% ethanol–water mixture (57%, v/v) (EtW) as co-solvent, at 8, 10, 20 and 30 MPa/313.15 K suggested 8 MPa as the most suitable pressure. The evaluation of the ‘bioavailability’ of the grape-CO2 extracts so obtained was carried out . The ‘bioavailability’ is a key step in ensuring ‘bioefficacy’ of bioactive compounds when used as supplements because they need to be bioavailable in order to exert any beneficial effects on human health.

Publication date: April 4, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Carla Da Porto*, Andrea Natolino, Dario Vojnovic, Deborha Decorti

*University of Udine

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.