Macrowine 2021
IVES 9 IVES Conference Series 9 Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

Abstract

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol. The seeds, in addition to oil, contain approximately 60% of the polyphenols present in grape, in particular an high concentration of flavan-3-ols, catechin and epicatechin. Grape seed extracts are very potent antioxidants and exhibit numerous interesting pharmacologic activities The traditional extraction methods used for polyphenols from solid or semi-solid materials have been focused on methods, which use organic solvents. These methods are laborious and time consuming, promote degradation reactions, have low selectivity and/or low extraction yields. Moreover, these conventional techniques employ large amounts of toxic solvents. Some of these critical points could be over boost with Supercritical Fluid Extraction (SFE). The most used solvent in extraction with supercritical fluids is the CO2, which is economical, safe, non-toxic (it does not leave residues in extract) and reaches supercritical conditions easily (32°C and 74 bar). It is suitable for thermo-labile substances being the temperature of its critical point 32°C. In the supercritical phase it is selective towards apolar compounds or weakly polar, so it is necessary to add co-solvents (ethanol and water are the co-solvents used in food processing) in order to extract the polar compounds. Applying this technology the thermal and chemical degradation of the products, which are completely free from processing residues, is prevented, while the solvent power and selectivity can be easily adjusted from gas-like to liquid-like by changing the pressure and temperature of the extraction, making thus possible the fractionation of the extract. SFE is a Green Technology and this guarantees competitive advantage in conjunction with sustainable development. The extraction of phenolic compounds from grape marc using supercritical CO2 containing 15% ethanol–water mixture (57%, v/v) (EtW) as co-solvent, at 8, 10, 20 and 30 MPa/313.15 K suggested 8 MPa as the most suitable pressure. The evaluation of the ‘bioavailability’ of the grape-CO2 extracts so obtained was carried out . The ‘bioavailability’ is a key step in ensuring ‘bioefficacy’ of bioactive compounds when used as supplements because they need to be bioavailable in order to exert any beneficial effects on human health.

Publication date: April 4, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Carla Da Porto*, Andrea Natolino, Dario Vojnovic, Deborha Decorti

*University of Udine

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).

The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

Tyrosol (TYR) and hydroxytyrosol (HYT) are bioactive phenols present in olive oil and wine, basic elements of the Mediterranean diet. TYR is reported in the literature for its interesting antioxidant, cardioprotective and anti-inflammatory properties. In wine, its concentration can reach values as high as about 40 mg/L
[Pour Nikfardjam et al. 2007] but, more frequently, this phenol – derived from yeast metabolism of tyrosine during fermentation – is present at lower levels, generally higher in red wines compared to whites. HYT was measured for the first time by Di Tommaso et al. [1998] in Italian wines – with maximum values of 4.20 mg/L and 1.92 mg/L for red and white wines, respectively – while definitely lower concentrations have been found later in Greek samples.

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.