Macrowine 2021
IVES 9 IVES Conference Series 9 Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

Abstract

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol. The seeds, in addition to oil, contain approximately 60% of the polyphenols present in grape, in particular an high concentration of flavan-3-ols, catechin and epicatechin. Grape seed extracts are very potent antioxidants and exhibit numerous interesting pharmacologic activities The traditional extraction methods used for polyphenols from solid or semi-solid materials have been focused on methods, which use organic solvents. These methods are laborious and time consuming, promote degradation reactions, have low selectivity and/or low extraction yields. Moreover, these conventional techniques employ large amounts of toxic solvents. Some of these critical points could be over boost with Supercritical Fluid Extraction (SFE). The most used solvent in extraction with supercritical fluids is the CO2, which is economical, safe, non-toxic (it does not leave residues in extract) and reaches supercritical conditions easily (32°C and 74 bar). It is suitable for thermo-labile substances being the temperature of its critical point 32°C. In the supercritical phase it is selective towards apolar compounds or weakly polar, so it is necessary to add co-solvents (ethanol and water are the co-solvents used in food processing) in order to extract the polar compounds. Applying this technology the thermal and chemical degradation of the products, which are completely free from processing residues, is prevented, while the solvent power and selectivity can be easily adjusted from gas-like to liquid-like by changing the pressure and temperature of the extraction, making thus possible the fractionation of the extract. SFE is a Green Technology and this guarantees competitive advantage in conjunction with sustainable development. The extraction of phenolic compounds from grape marc using supercritical CO2 containing 15% ethanol–water mixture (57%, v/v) (EtW) as co-solvent, at 8, 10, 20 and 30 MPa/313.15 K suggested 8 MPa as the most suitable pressure. The evaluation of the ‘bioavailability’ of the grape-CO2 extracts so obtained was carried out . The ‘bioavailability’ is a key step in ensuring ‘bioefficacy’ of bioactive compounds when used as supplements because they need to be bioavailable in order to exert any beneficial effects on human health.

Publication date: April 4, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Carla Da Porto*, Andrea Natolino, Dario Vojnovic, Deborha Decorti

*University of Udine

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-
UPLC/FTMS).

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.