Macrowine 2021
IVES 9 IVES Conference Series 9 Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

Abstract

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol. The seeds, in addition to oil, contain approximately 60% of the polyphenols present in grape, in particular an high concentration of flavan-3-ols, catechin and epicatechin. Grape seed extracts are very potent antioxidants and exhibit numerous interesting pharmacologic activities The traditional extraction methods used for polyphenols from solid or semi-solid materials have been focused on methods, which use organic solvents. These methods are laborious and time consuming, promote degradation reactions, have low selectivity and/or low extraction yields. Moreover, these conventional techniques employ large amounts of toxic solvents. Some of these critical points could be over boost with Supercritical Fluid Extraction (SFE). The most used solvent in extraction with supercritical fluids is the CO2, which is economical, safe, non-toxic (it does not leave residues in extract) and reaches supercritical conditions easily (32°C and 74 bar). It is suitable for thermo-labile substances being the temperature of its critical point 32°C. In the supercritical phase it is selective towards apolar compounds or weakly polar, so it is necessary to add co-solvents (ethanol and water are the co-solvents used in food processing) in order to extract the polar compounds. Applying this technology the thermal and chemical degradation of the products, which are completely free from processing residues, is prevented, while the solvent power and selectivity can be easily adjusted from gas-like to liquid-like by changing the pressure and temperature of the extraction, making thus possible the fractionation of the extract. SFE is a Green Technology and this guarantees competitive advantage in conjunction with sustainable development. The extraction of phenolic compounds from grape marc using supercritical CO2 containing 15% ethanol–water mixture (57%, v/v) (EtW) as co-solvent, at 8, 10, 20 and 30 MPa/313.15 K suggested 8 MPa as the most suitable pressure. The evaluation of the ‘bioavailability’ of the grape-CO2 extracts so obtained was carried out . The ‘bioavailability’ is a key step in ensuring ‘bioefficacy’ of bioactive compounds when used as supplements because they need to be bioavailable in order to exert any beneficial effects on human health.

Publication date: April 4, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Carla Da Porto*, Andrea Natolino, Dario Vojnovic, Deborha Decorti

*University of Udine

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The influence of soil management practices on functional traits and biodiversity of weed communities in Swiss vineyards

Green cover in vine rows provides many ecological services, but can also negatively impact the crop, depending on the weed species. The composition of a vineyard weed community is influenced by many parameters. Ensuring an evolution of the vine row flora into a desired direction is therefore very complex. A key step towards this goal is to know which factors influence the establishment of the weed community and which types of communities are best suited for vineyards. In this study, we analysed the weed communities of several vineyards in the Lake Geneva region (379 botanical surveys on 117 plots), with the aim to highlight the links between soil management practices (chemical and mechanical weeding, mowing, mulching roll) and phytosociological profiles, biodiversity and selected functional traits (growth forms, life strategies, root depth). T

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols.

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.