Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Abstract

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes. Syrah grapes, vintage 2012, were used for the experiment on a pilot scale. In 2013, PFM trials were performed with Syrah, Cabernet Franc and Montepulciano grapes vinified on an industrial scale. For each trial, perfectly healthy grapes were manually harvested at maturity. At the winery, grapes were crushed, destemmed and fermented in a stainless steel tank, at 28 °C. At the end of fermentation, free-run wine was used as control in the experiment. After racking, wet marc (marc/free-run wine ratio about 3/1) was transferred to the maceration system, added with 5 Kg/hL of dry ice and processed for 48 h at 6 °C, mixing every 6 h for 15 min. At the end of the cycle, wine (WPFM) was drained and marc was gently pressed inside the system. In 2012, during PFM treatment of Syrah, a significant decrease of total polyphenols, proteins and Astringency Mucin Index (AMI)(Fia et al. 2009) was observed. Total polyphenols, proteins and AMI remained lower than that detected for the control up to 6 months. In 2013, WPFM and control wines were aged for 18 months in oak barrel. After 6 months, chemical parameters and sensory attributes of the wines were evaluated. Total polyphenols, proteins and the Astringency Mucin Index (AMI) of WPFM were lower compared to the control wine. WPFM wines reached protein stability while the controls were unstable. Color intensity of the WPFM samples was high but lower than that of the control while hue was similar. The effects of PFM treatment on sensory characteristics of the wines vary depending on grape variety. Syrah and Cabernet Franc elaborated with PFM technique were perceived as significantly less astringent and bitter compared to the control wines. PFM treatment also influenced smell characteristics of Syrah and Cabernet Franc in term of oak and fruity aroma. After 6 months, the sensory profile of Montepulciano wine from PFM treatment did not show differences compared to control. After 18 months, all wines were significantly less astringent compared to control. The obtained results indicate that the PFM treatment can rapidly induce a noticeable reduction of wine astringency, probably due to a selective precipitation of the most reactive polyphenols with grape proteins.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Giovanna Fia*, Claudio Gori

*University of Florence

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Anthocyanin accumulation and extractability were studied in Tannat, Cabernet Sauvignon and Merlot grapes produced in the south of Uruguay in two consecutive seasons. Typical cultivation situations employed in the region for each variety were considered. A follow-up was carried out, considering 60 plants per vineyard, and the harvest was determined according to the technological indices of maturity. Samples of grapes were taken in duplicate in each vineyard periodically along grape maturation. The basic composition, polyphenolic potential and anthocyanin extractability were determined. Also, half of grapes were frozen and later peeled; skin extractions over 24 hs with a solution of 12% ethanol and pH 3.2 were carried out. The anthocyanin contents of the extracts obtained were determined by HPLC-DAD. The levels of anthocyanins reached the highest values before technological maturity. Anthocyanin extractability had a decrease during grape maturation.

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal.

Characterization of various groups of pyranoanthocyanins in Merlot red wine

In red wines, anthocyanins evolve during the wine-making process and ageing. They react with other compounds (such as vinylphenols, acetaldehyde, pyruvic acid…) to form a stable family of compounds called pyranoanthocyanins. Furthermore, the oxidation process can modify the anthocyanic profile of a red wine. It is also interesting to evaluate the occurrence of the different subclasses of pyranoanthocyanins and to characterize their chemical properties. The first objective of this study is to evaluate the occurrence of the different groups of pyranoanthocyanins in an oxidised Merlot wine by a centrifugal partition chromatography strategy. The second goal is to evaluate their relative impact in red wines from Bordeaux region by measuring their concentrations.

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect.