Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Abstract

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes. Syrah grapes, vintage 2012, were used for the experiment on a pilot scale. In 2013, PFM trials were performed with Syrah, Cabernet Franc and Montepulciano grapes vinified on an industrial scale. For each trial, perfectly healthy grapes were manually harvested at maturity. At the winery, grapes were crushed, destemmed and fermented in a stainless steel tank, at 28 °C. At the end of fermentation, free-run wine was used as control in the experiment. After racking, wet marc (marc/free-run wine ratio about 3/1) was transferred to the maceration system, added with 5 Kg/hL of dry ice and processed for 48 h at 6 °C, mixing every 6 h for 15 min. At the end of the cycle, wine (WPFM) was drained and marc was gently pressed inside the system. In 2012, during PFM treatment of Syrah, a significant decrease of total polyphenols, proteins and Astringency Mucin Index (AMI)(Fia et al. 2009) was observed. Total polyphenols, proteins and AMI remained lower than that detected for the control up to 6 months. In 2013, WPFM and control wines were aged for 18 months in oak barrel. After 6 months, chemical parameters and sensory attributes of the wines were evaluated. Total polyphenols, proteins and the Astringency Mucin Index (AMI) of WPFM were lower compared to the control wine. WPFM wines reached protein stability while the controls were unstable. Color intensity of the WPFM samples was high but lower than that of the control while hue was similar. The effects of PFM treatment on sensory characteristics of the wines vary depending on grape variety. Syrah and Cabernet Franc elaborated with PFM technique were perceived as significantly less astringent and bitter compared to the control wines. PFM treatment also influenced smell characteristics of Syrah and Cabernet Franc in term of oak and fruity aroma. After 6 months, the sensory profile of Montepulciano wine from PFM treatment did not show differences compared to control. After 18 months, all wines were significantly less astringent compared to control. The obtained results indicate that the PFM treatment can rapidly induce a noticeable reduction of wine astringency, probably due to a selective precipitation of the most reactive polyphenols with grape proteins.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Giovanna Fia*, Claudio Gori

*University of Florence

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.

Maturation of Agiorgitiko (Vitis vinifera) red wine on its wine lees: Impact on its phenolic composition

Maturation of wine on lees (often referred as sur lie) is a common practice applied by many winemakers around the world. In the past this method was applied mainly on white and/or sparkling wine production but recently also to red wine production. In our experiment, we matured red wine on wine lees of two origins: a) Light wine lees, collected after the completion of the alcoholic fermentation, b) Heavy lees, collected after the completion of the malolactic fermentation. The lees were free of off-odors and were added in the red wine in percentage 3% and 8%, simulating common winemaking addition. The maturation lasted in total six months and samples were collected for analysis after one, three and six months. During storage the lees were stirred.

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.