Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Abstract

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes. Syrah grapes, vintage 2012, were used for the experiment on a pilot scale. In 2013, PFM trials were performed with Syrah, Cabernet Franc and Montepulciano grapes vinified on an industrial scale. For each trial, perfectly healthy grapes were manually harvested at maturity. At the winery, grapes were crushed, destemmed and fermented in a stainless steel tank, at 28 °C. At the end of fermentation, free-run wine was used as control in the experiment. After racking, wet marc (marc/free-run wine ratio about 3/1) was transferred to the maceration system, added with 5 Kg/hL of dry ice and processed for 48 h at 6 °C, mixing every 6 h for 15 min. At the end of the cycle, wine (WPFM) was drained and marc was gently pressed inside the system. In 2012, during PFM treatment of Syrah, a significant decrease of total polyphenols, proteins and Astringency Mucin Index (AMI)(Fia et al. 2009) was observed. Total polyphenols, proteins and AMI remained lower than that detected for the control up to 6 months. In 2013, WPFM and control wines were aged for 18 months in oak barrel. After 6 months, chemical parameters and sensory attributes of the wines were evaluated. Total polyphenols, proteins and the Astringency Mucin Index (AMI) of WPFM were lower compared to the control wine. WPFM wines reached protein stability while the controls were unstable. Color intensity of the WPFM samples was high but lower than that of the control while hue was similar. The effects of PFM treatment on sensory characteristics of the wines vary depending on grape variety. Syrah and Cabernet Franc elaborated with PFM technique were perceived as significantly less astringent and bitter compared to the control wines. PFM treatment also influenced smell characteristics of Syrah and Cabernet Franc in term of oak and fruity aroma. After 6 months, the sensory profile of Montepulciano wine from PFM treatment did not show differences compared to control. After 18 months, all wines were significantly less astringent compared to control. The obtained results indicate that the PFM treatment can rapidly induce a noticeable reduction of wine astringency, probably due to a selective precipitation of the most reactive polyphenols with grape proteins.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Giovanna Fia*, Claudio Gori

*University of Florence

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of glutathione and elemental sulphur juice addition on the volatile thiol production in South African Sauvignon blanc wine

Three compounds, 3-mercaptohexanol (3MH), 3-mercaptohexyl-acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP), also known as varietal thiols, have been identified to contribute positively to wine aroma and are responsible for the distinct gooseberry, grapefruit, guava and box tree character found in Sauvignon blanc wines. Certain volatile thiol compounds though, can cause off-aromas of onion, garlic, rubber and rotten egg, this group of molecules is known as reductive sulphur compounds (RSC). This study looks into how the addition of sulphur-compounds to Sauvignon blanc juice contributes to the varietal thiol (3MH and 3MHA) concentration and reductive sulphur compound concentration in South African Sauvignon blanc wine.

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

Assessing the effect of oak derived aromas on mouthfeel perception in Chardonnay wine

Mouthfeel is an important quality parameter for Chardonnay wines, particularly those aged in oak. While research on mouthfeel has traditionally focused on the impact of non-aromatic compounds, the role of aroma compounds has largely been over looked. However, in wine as well as other food interactions between retronasal aroma and mouthfeel have been noted. The goal of this research was to investigate the impact of wine aroma on the perception of mouthfeel. Because of the importance of oak aging in the development of Chardonnay mouthfeel, the impact of oak aromas on perceived mouthfeel was explored. Aroma compounds associated with oak (ethyl palmitate, eugenol, furfural, isoeugenol, syringaldehyde, vanillin and whiskey lactone) were added to two different Chardonnay wines; one with no oak influence and one fermented in neutral oak. Low and high concentrations of the compounds were added based on concentrations typically found in barrel aged Chardonnay wine.

Attractiveness and sweetness of red wines: Synergies between American oak barrels and mannoproteins

In partnership with a Bordeaux property wanting to improve the quality of its second wine, the effects of two factors, American oak barrels and mannoproteins were studied. Their impact on the attractiveness and sweetness of wines were characterized during two successive vintages (2012 and 2013). Vinification took place with a homogeneous batch of Cabernet Sauvignon. The wine was then divided up into various groups of five barrels of French and American oak, new or reused. Analyses of volatile and non-volatile wood compounds were undertaken at four months and eight months of wood ageing, by LC-MS and GC-MS.

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).