Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Abstract

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes. Syrah grapes, vintage 2012, were used for the experiment on a pilot scale. In 2013, PFM trials were performed with Syrah, Cabernet Franc and Montepulciano grapes vinified on an industrial scale. For each trial, perfectly healthy grapes were manually harvested at maturity. At the winery, grapes were crushed, destemmed and fermented in a stainless steel tank, at 28 °C. At the end of fermentation, free-run wine was used as control in the experiment. After racking, wet marc (marc/free-run wine ratio about 3/1) was transferred to the maceration system, added with 5 Kg/hL of dry ice and processed for 48 h at 6 °C, mixing every 6 h for 15 min. At the end of the cycle, wine (WPFM) was drained and marc was gently pressed inside the system. In 2012, during PFM treatment of Syrah, a significant decrease of total polyphenols, proteins and Astringency Mucin Index (AMI)(Fia et al. 2009) was observed. Total polyphenols, proteins and AMI remained lower than that detected for the control up to 6 months. In 2013, WPFM and control wines were aged for 18 months in oak barrel. After 6 months, chemical parameters and sensory attributes of the wines were evaluated. Total polyphenols, proteins and the Astringency Mucin Index (AMI) of WPFM were lower compared to the control wine. WPFM wines reached protein stability while the controls were unstable. Color intensity of the WPFM samples was high but lower than that of the control while hue was similar. The effects of PFM treatment on sensory characteristics of the wines vary depending on grape variety. Syrah and Cabernet Franc elaborated with PFM technique were perceived as significantly less astringent and bitter compared to the control wines. PFM treatment also influenced smell characteristics of Syrah and Cabernet Franc in term of oak and fruity aroma. After 6 months, the sensory profile of Montepulciano wine from PFM treatment did not show differences compared to control. After 18 months, all wines were significantly less astringent compared to control. The obtained results indicate that the PFM treatment can rapidly induce a noticeable reduction of wine astringency, probably due to a selective precipitation of the most reactive polyphenols with grape proteins.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Giovanna Fia*, Claudio Gori

*University of Florence

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage.

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.