Macrowine 2021
IVES 9 IVES Conference Series 9 Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Abstract

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction (bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device. We then elaborated a dynamic model predicting the synthesis of five fermentative aromas representative of three different chemical families: two higher alcohols (isobutanol, isoamyl alcohol), one acetate ester (isoamyl acetate) and two ethyl esters (ethyl hexanoate, ethyl octanoate). The online monitoring highlighted two successive linear phases of aroma compound production from sugar. We therefore began by modeling changes in the production yields of these compounds (aroma compound vs. sugar) depending on initial nitrogen concentration and temperature. We then integrated these yields into a previously developed model of the kinetics of sugar consumption during the fermentation process. We thus obtained a dynamic model predicting the production kinetics of volatile compounds throughout the alcoholic fermentation from initial nitrogen concentration and temperature values. The parameters of the model were identified from nine fermentations performed at temperatures between 18 and 30 ◦C and with initial YAN contents ranging from 70 to 410 mgN/L. The model was validated in six independent experiments with conditions in the same range. Predictions were accurate: the mean difference between experimental and estimated values for fermentative aroma synthesis throughout the process was below 10%, for both the fermentations used to build the model and those used for validation. This model is the first to simulate the production kinetics of fermentative aromas and provides new insight into the synthesis of these volatile compounds. It will facilitate the development of innovative strategies for controlling the production of those aromas in winemaking, through management of the principal control factors: YAN content and temperature during the alcoholic fermentation.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Jean-Roch Mouret*, Cristian Trelea, Jean-Marie Sablayrolles, Vincent Farines

*INRA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles
(references) are used for the evaluation of similarities and dissimilarities between samples.

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex.

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2).

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.