Macrowine 2021
IVES 9 IVES Conference Series 9 Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Abstract

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction (bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device. We then elaborated a dynamic model predicting the synthesis of five fermentative aromas representative of three different chemical families: two higher alcohols (isobutanol, isoamyl alcohol), one acetate ester (isoamyl acetate) and two ethyl esters (ethyl hexanoate, ethyl octanoate). The online monitoring highlighted two successive linear phases of aroma compound production from sugar. We therefore began by modeling changes in the production yields of these compounds (aroma compound vs. sugar) depending on initial nitrogen concentration and temperature. We then integrated these yields into a previously developed model of the kinetics of sugar consumption during the fermentation process. We thus obtained a dynamic model predicting the production kinetics of volatile compounds throughout the alcoholic fermentation from initial nitrogen concentration and temperature values. The parameters of the model were identified from nine fermentations performed at temperatures between 18 and 30 ◦C and with initial YAN contents ranging from 70 to 410 mgN/L. The model was validated in six independent experiments with conditions in the same range. Predictions were accurate: the mean difference between experimental and estimated values for fermentative aroma synthesis throughout the process was below 10%, for both the fermentations used to build the model and those used for validation. This model is the first to simulate the production kinetics of fermentative aromas and provides new insight into the synthesis of these volatile compounds. It will facilitate the development of innovative strategies for controlling the production of those aromas in winemaking, through management of the principal control factors: YAN content and temperature during the alcoholic fermentation.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Jean-Roch Mouret*, Cristian Trelea, Jean-Marie Sablayrolles, Vincent Farines

*INRA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts.

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.