GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Untangling belowground response of grapevines to cover crop competition

Untangling belowground response of grapevines to cover crop competition

Abstract

Context and purpose of the study ‐ Cover crops are planted in vineyards for multiple benefits including soil conservation, weed management, regulation of grapevine vegetative growth, and improved fruit quality. In humid climates where inter‐row cover crops are standard management, we evaluated under‐ vine cover crops for beneficial reductions in vegetative growth. Several factors affect the impact of under‐vine cover crops on vine growth and productivity, including seasonal resource availability, vine age, and rootstock. To better understand these factors, we examined belowground processes that might clarify mechanisms of resource competition between grapevines and cover crops.

Material and methods ‐ Field examinations of mature vinifera and young inter‐specific hybrid grapevines grafted on two rootstocks varying in vigor, Riparia (Vitis riparia) and 101‐14 Mgt (Vitis riparia x Vitis rupestris), were conducted at three humid, eastern US vineyards. Both destructive (soil coring) and non‐destructive (minirhizotron technique) methods were used for root observations and analysis.

Results ‐ Roots of young and mature vines coped with under‐vine cover crop competition by avoiding shallow soil regions mainly colonized by cover crops roots, suggesting complementary use of water and nutrients. In mature vines, cover crop competition also induced shorter lifespan of grapevine roots, but did not affect root morphological traits, such as specific root length, diameter, mycorrhizal fungal colonization, and root branching. In contrast, young grapevine root systems responded to competition by increasing specific root length and decreasing absorptive root diameter, regardless of the rootstock. Although rootstocks displayed a similar belowground response, young vines grafted on the low‐vigor rootstock exhibited less growth reduction during the first year suggesting that tolerance of cover crop competition may be rootstock dependent. Overall, young grapevines growing with cover crops tended to have greater reductions in growth compared to mature vines, suggesting that vines acclimate to competition over multiple years.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Michela CENTINARI (1), David EISSENSTAT (2), Suzanne FLEISHMAN (1,2), Anne KLODD (1,2,4), Taryn BAUERLE (5)

(1) Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
(2) Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, USA
(4) Current affiliation: University of Minnesota, Andover, MN, USA
(5) School of Integrative Plant Science, Cornell University, Ithaca, NY, USA

Contact the author

Keywords

Cover crops, plasticity, root distribution, Vitis

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Acumulación de materia seca, orientada a valorar la fijación de carbono, en función del aporte de riego y la pluviometría, en Cabernet-Sauvignon a lo largo de 15 años

The vineyard is capable of fixing carbon in its permanent structure from atmospheric carbon dioxide, through the process of gas exchange and the performance of photosynthesis. The photosynthetic capacity of the vineyard depends on the water resources that the plant may have at its disposal, so the amount of dry matter, derived from the processed photosynthates, that it can store will depend on the water regime of the crop, both in the annually renewable organs as in permanent parts.

The effects of reducing herbicides in New Zealand vineyards

Herbicides are commonly sprayed in the vine row to prevent competition with vines for water and minerals and to keep weeds from growing into the bunch zone. Sprays are applied before budbreak and reapplied multiple times during the season to keep the undervine bare. There is growing concern about the negative effects of herbicides on humans and the environment, and weeds in New Zealand have developed resistance to herbicides. Therefore, it is imperative that we reduce our reliance on herbicides in viticulture and incorporate methods that do not engender resistance.

Satellite imagery : a tool for large scale vineyard management

Remote sensing, using Near Infra Red wavelength, can characterize within-vineyard variability using vegetation index. Between 2007 and 2009, a study was led on the vineyards of a cooperative winery, in Fitou area (France) aiming at characterizing vineyard oenological potential. A vegetation index, green leaf cover, developed on crops (wheat, rice, corn…) was implemented on vineyards.

From vine to wine : a multi-trait experiment for increasing the varietal diversity in the bordeaux wine region. How to adapt to climate change without damaging terroir expression?

Context and purpose of the study climate change is impacting wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Replacing some of the plant material can be an efficient lever for adapting to climate change. However, the change of cultivars also raises questions about the region’s wine typicity. This study, based on seven years of data, investigates the potential adaptability of over 50 different varieties in the bordeaux wine region.

Appliance of climate projections for climate change study in Serbian vineyard regions

Climate projections considered here are for two periods in the future throughout two IPCC scenarios: 2001 – 2030 (A1B) and 2071 – 2100 (A2) obtained using Coupled Regional Climate