GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Aroma and quality assessment for vertical vintages using machine learning modelling based on weather and management information

Aroma and quality assessment for vertical vintages using machine learning modelling based on weather and management information

Abstract

Context and purpose of the study ‐ Wine quality traits are usually given by parameters such as aroma profile, total acidity, alcohol content, colour and phenolic content, among others. These are highly dependent on the weather conditions during the growing season and management strategies. Therefore, it is important to develop predictive models using machine learning (ML) algorithms to assess and predict wine quality traits before the winemaking process.

Material and methods ‐ Samples in duplicates of Pinot Noir wines from vertical vintages (2008 to 2013) of the same winery located in Macedon Ranges, Victoria, Australia were used to assess different chemical analytics such as i) aromas using gas chromatography – mass spectrometry, ii) color density, iii) color hue, iv) degree of red pigmentation, v) total red pigments, vi) total phenolics, vii) pH, viii) total acidity (TA), and ix) alcohol content. Data from weather conditions from the specific vintages were obtained both from the bureau of meteorology (BoM) and the Australian Wine Availability Project (AWAP) climate databases. Such data consisted of: i) solar exposure from veraison to harvest (V‐H), ii) solar exposure from September to harvest (S‐H), iii) maximum January solar exposure, iv) degree days from S‐H, v) maximum January evaporation, vi) mean maximum temperature from veraison to harvest, vii) mean minimum temperature from V‐H, viii) water balance from S‐H, ix) solar exposure from V‐H, x) degree hour accumulation with base 25 – 30 °C, xi) degree hour accumulation with base 25 °C, xii) degree hour accumulation with base 30 °C, xiii) degree hour accumulation with base 35 °C, and xiv) total cumulative degree days accumulation with base 10 °C. All data were used to develop two machine learning (ML) regression models using Matlab® R2018b. The best models obtained were using artificial neural networks (ANN) with the Levenberg‐Marquardt algorithm with 5 neurons for Model 1 and 9 neurons for Model 2. Model 1 was developed using the 14 parameters from the weather data as inputs to predict 21 aromas found in the wines from the six different vinatges. Model 2 was developed using the same 14 parameters from weather data and the eight chemical parameters as targets and outputs.

Results ‐ Both models obtained presented very high accuracy to predict wine quality trait parameters. Model 1 had an overall correlation coefficient R = 0.99 with a high performance based on the mean squared error (MSE = 0.01), while Model 2 had an overall correlation coefficient R = 0.98 with a high performance (MSE = 0.03). These models would aid in the prediction of wine quality traits before its production, which would give anticipated information to winemakers about the product they would obtain to make early decisions on wine style variations.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Sigfredo FUENTES, Claudia GONZALEZ VIEJO, Xiaoyi WANG, Damir D. TORRICO

School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, VIC 3010, Australia

Contact the author

Keywords

wine quality, machine learning, weather, aromas

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Évaluation environnementale de pratiques vitivinicoles innovantes

The Institut Français De La Vigne Et Du Vin (IFV) is conducting many experiments on innovative winegrowing practices, which are emerging in companies in the sector, or which are still at the R&D stage for agricultural suppliers. The purpose of these practices may be to reduce environmental impact, to adapt vineyards to climate change, or to achieve other technical, economic or social aims. Whatever the objective, it is necessary to verify the relevance of these new practices, and in particular their environmental relevance, i.e. That at the very least, the changes in practices do not increase the environmental impact of the technical itineraries.

Influence of the unité de terroir base on the typicity of winesin the AOC Priorat in Tarragona

L’AOC Priorat, située derrière les montagnes du pré littoral de Tarragone, se caractérise par un climat méditerranéen avec une tendance à la continentalité et très peu de précipitation pendant le cycle végétatif. Les sols sont secs, pauvres et caillouteux, formés par des schistes. Au cours des années 2000 et 2001, une étude de l’influence du terroir sur la typicité des vins du Priorat a été réalisée en prenant comme référence trois cépages cultivés dans différentes parceIles pour mesurer l’effet du terroir et du mésoclimat sur la qualité des vins:

Politics meets terroir. The story of Prosecco – Are GI’s just a protectionist racket?

The recent Free Trade Agreement negotiations between Australia and the European Union have again put the issue of Geographical Indications (GIs) in the spotlight. Australia has long demonstrated its understanding of GIs and maintains a clear and rigorous GI protection system for wine. For many years, Australia’s wine sector was a strong advocate for GIs and a strong system to protect the

Cartographie des terroirs viticoles: valorisation des résultats par un logiciel de consultation dynamique de cartes

Pour son travail de cartographie et de caractérisation des terroirs, la Cellule Terroirs Viticoles utilise la méthode développée par l’Unité Vigne et Vin du Centre INRA d’Angers. Cette méthode reconnue au niveau international est appliquée dans les vignobles du Val de Loire à l’échelle du 1/10 000e et est valorisée par des éditions d’Atlas Viticoles à destination des viticulteurs et des organismes techniques.

Interactions « Terroir x Vigne » : facteurs de maîtrise du micro-environnement et de la physiologie de la plante en rapport avec le niveau de maturité et les éléments de typicité

Le vigneron européen est de plus en plus à la recherche de la valorisation de son terroir par la personnalisation de la typicité de ses produits. Dans ce contexte, il est apparu depuis longtemps que la part des facteurs technologiques ou humains est d’une importance capitale face aux conditions de l’envirormement naturel. Le terroir se construit plus qu’il ne se subit.