Macrowine 2021
IVES 9 IVES Conference Series 9 A preliminary study of clonal selection in cv. Viura in relation to varietal aroma profile

A preliminary study of clonal selection in cv. Viura in relation to varietal aroma profile

Abstract

Viura is a synonym for Macabeo and currently it is the most widely planted white grape variety in D.O.Ca. Rioja, with 3,569 ha, representing 84% of the white grape cultivated area. It is a generous-yielding grape, presenting low values of titratable acidity and with large and compact clusters which makes it susceptible to Botrytis cinerea. Thus, this variety not always satisfies the wine grower’s prospects. Nowadays, the available plant material is scarce, moreover, it was selected on the basis of other quality criteria, not currently requested. Cv. Viura is suitable to elaborate white dry wines and also sparkling wines together with other varieties. Floral and fruity aromas are the ones more representative of cv. Viura, although they appear with a medium level intensity. Grape volatile composition is one of the most important parameters determining must and wine quality. Wine aroma is formed by volatile compounds of different chemical natures and origins and they vary as a function of several factors, being the variety a key factor. For it, in order to characterize the aroma profile of cv. Viura and provide to the market new certified plant material, a clonal selection with 106 clones of cv. Viura was carried out. These clones, belonging to different cultivated areas of D.O.Ca Rioja, were planted in a comparative field of clones. Agronomical and technological characteristics were evaluated during three consecutive years, selecting on the basis of these parameters 41 clones that showed low production and high values of titratable acidity. The volatile compounds of these clones were analyzed by HS-SPME-GC-MS. The results showed that C6 compounds, norisoprenoids and terpenoids were the most representative in cv. Viura, showing C-6 compounds a great variability within clones. Concerning each group, 24% of the studied clones highlighted by presenting a higher content of C6 alcohols in relation to their average content, being the most representative compounds (E)-2-hexenal, hexanal and 1-hexanol. These compounds, depending on its concentration, can have a detrimental effect on wine quality due to their grassy and herbaceous odors. Approximately the 50% of clones exhibited a higher content of norisoprenoids and terpenoids in relation to their average content. (E)-β-damascenone, β-ionone and (Z)-β-damascenone were the most abundant norisoprenoids compounds and linalool, nerol oxide and α-terpineol the most abundant terpenoids. Both, norisoprenoids and terpenoids are among the most odoriferous groups of compounds, emitting floral scents which allow characterize the varietal aroma. Sixteen clones out of forty one presented the highest content of these two positive groups of compounds, being considered the ones with the better varietal aroma profile. These results obtained can be of great interest to wine sector due to the increase of supplied certified plant material of this variety which contributes to improve its wines quality.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ana Gonzalo-Diago*, Elisa Baroja, Enrique García-Escudero, Estela Terroba-Pérez, Juana Martínez

*ICVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages

An alternative to improve grape quality is the application to the vineyard of elicitors. Although these compounds were first used to increase resistance of plants against pathogens, it has been found that they are also able to induce mechanisms involved in the synthesis of phenolic compounds and some amino acids. However, researches about the influence of elicitors on grape volatile composition are scarcely. Therefore, the aim of this work was to study the influence of methyl jasmonate (MeJ) foliar application on grape aroma composition over three consecutive vintages. MeJ was applied to Tempranillo grapevines at a concentration of 10 mM in 2013, 2014, and 2015 years. Control plants were sprayed with water.

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Elicitors used as a tool to increase stilbenes in grapes and wines

The economic importance of grapevine as a crop plant makes Vitis vinífera a good model system to study the improvement of the nutraceutical properties of food products (Vezulli et al. 2007). Stilbenes in general, and trans-resveratrol in particular, have been reported to be responsible for various beneficial effects. Resveratrol´s biological properties include antibacteria and antifungal effects, as well as cardioprotective, neuroprotective and anticâncer actions (Guerrero et al. 2010 ). Stilbenes can be induced by biotic and abiotic elicitors since they are phytoalexins (Bavaresco et al. 2001).