Macrowine 2021
IVES 9 IVES Conference Series 9 A preliminary study of clonal selection in cv. Viura in relation to varietal aroma profile

A preliminary study of clonal selection in cv. Viura in relation to varietal aroma profile

Abstract

Viura is a synonym for Macabeo and currently it is the most widely planted white grape variety in D.O.Ca. Rioja, with 3,569 ha, representing 84% of the white grape cultivated area. It is a generous-yielding grape, presenting low values of titratable acidity and with large and compact clusters which makes it susceptible to Botrytis cinerea. Thus, this variety not always satisfies the wine grower’s prospects. Nowadays, the available plant material is scarce, moreover, it was selected on the basis of other quality criteria, not currently requested. Cv. Viura is suitable to elaborate white dry wines and also sparkling wines together with other varieties. Floral and fruity aromas are the ones more representative of cv. Viura, although they appear with a medium level intensity. Grape volatile composition is one of the most important parameters determining must and wine quality. Wine aroma is formed by volatile compounds of different chemical natures and origins and they vary as a function of several factors, being the variety a key factor. For it, in order to characterize the aroma profile of cv. Viura and provide to the market new certified plant material, a clonal selection with 106 clones of cv. Viura was carried out. These clones, belonging to different cultivated areas of D.O.Ca Rioja, were planted in a comparative field of clones. Agronomical and technological characteristics were evaluated during three consecutive years, selecting on the basis of these parameters 41 clones that showed low production and high values of titratable acidity. The volatile compounds of these clones were analyzed by HS-SPME-GC-MS. The results showed that C6 compounds, norisoprenoids and terpenoids were the most representative in cv. Viura, showing C-6 compounds a great variability within clones. Concerning each group, 24% of the studied clones highlighted by presenting a higher content of C6 alcohols in relation to their average content, being the most representative compounds (E)-2-hexenal, hexanal and 1-hexanol. These compounds, depending on its concentration, can have a detrimental effect on wine quality due to their grassy and herbaceous odors. Approximately the 50% of clones exhibited a higher content of norisoprenoids and terpenoids in relation to their average content. (E)-β-damascenone, β-ionone and (Z)-β-damascenone were the most abundant norisoprenoids compounds and linalool, nerol oxide and α-terpineol the most abundant terpenoids. Both, norisoprenoids and terpenoids are among the most odoriferous groups of compounds, emitting floral scents which allow characterize the varietal aroma. Sixteen clones out of forty one presented the highest content of these two positive groups of compounds, being considered the ones with the better varietal aroma profile. These results obtained can be of great interest to wine sector due to the increase of supplied certified plant material of this variety which contributes to improve its wines quality.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ana Gonzalo-Diago*, Elisa Baroja, Enrique García-Escudero, Estela Terroba-Pérez, Juana Martínez

*ICVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes.