Macrowine 2021
IVES 9 IVES Conference Series 9 Use of computational modelling for selecting adsorbents for improved fining of wine

Use of computational modelling for selecting adsorbents for improved fining of wine

Abstract

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds. Computational modelling techniques have not previously been exploited by the wine sector but have been used in other fields to predict the behaviour of target compounds with selected substrates. This study aimed to better elucidate the binding interactions between wine components (both desirable and undesirable) and common adsorbents through computational modelling and laboratory scale fining trials in order to improve the selection of adsorbents for specific fining or taint removal applications. The binding energies for a range of volatile compounds associated with common wine faults and taints, including guaiacol, 4-methylguaiacol, cresols and syringol (smoke taint), 4-ethylguaiacol and 4-ethylphenol (Brettanomyces spoilage), 3-isobutyl-2-methoxypyrazine (IBMP; ladybird taint), geosmin and methylisoborneol (fungal taint) and trichloroanisole (cork taint), as well as volatiles associated with varietal aroma and flavour, including esters, C13-norisoprenoids and monoterpenes, or oak maturation, including cis- and trans-oak lactone, vanillin and eugenol, were calculated against a range of adsorbent substrates, including bentonite, polyvinylpolypyrrolidone (PVPP) and α-cyclodextrin (α-CD) using the density functional theory as implemented in FHI-aims, a software package for atomic scale materials modelling. The computational data suggests that α-CD could be used to selectively remove a variety of different molecules but it is less suitable for removal of IBMP. In fact, the strongest interaction comes from materials with strong hydrogen bonding systems, such as eugenol and vanillin. PVPP is a purely hydrogen-bonding sponge. It actively excludes substrates which do not hydrogen bond very well; thus, it has a very high selectivity for vanillin, and other molecules with pendant hydroxyl functionalities in a non-sterically limited environment (such as certain phenols). This presentation will comprise results from computational modelling experiments and fining experiments conducted in the laboratory. Quantitative chemical analysis of wine volatiles before and after fining treatment enables predictions based on computational approaches to be evaluated.

1. Castellari, M., Versari, A., Fabiani, A., Parpinello, G.P. and Galassi, S. (2001) Removal of ochratoxin A in red wines by means of absorption treatments with commercial fining agents. Journal of Agricultural and Food Chemistry, 49, 3917–3921.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Julie Culbert*, Christopher Hendon, Kerry Wilkinson

*University of Adelaide

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Light-struck taste in white wine: enological approach for its prevention

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.

Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Anthocyanin accumulation and extractability were studied in Tannat, Cabernet Sauvignon and Merlot grapes produced in the south of Uruguay in two consecutive seasons. Typical cultivation situations employed in the region for each variety were considered. A follow-up was carried out, considering 60 plants per vineyard, and the harvest was determined according to the technological indices of maturity. Samples of grapes were taken in duplicate in each vineyard periodically along grape maturation. The basic composition, polyphenolic potential and anthocyanin extractability were determined. Also, half of grapes were frozen and later peeled; skin extractions over 24 hs with a solution of 12% ethanol and pH 3.2 were carried out. The anthocyanin contents of the extracts obtained were determined by HPLC-DAD. The levels of anthocyanins reached the highest values before technological maturity. Anthocyanin extractability had a decrease during grape maturation.