Macrowine 2021
IVES 9 IVES Conference Series 9 Use of computational modelling for selecting adsorbents for improved fining of wine

Use of computational modelling for selecting adsorbents for improved fining of wine

Abstract

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds. Computational modelling techniques have not previously been exploited by the wine sector but have been used in other fields to predict the behaviour of target compounds with selected substrates. This study aimed to better elucidate the binding interactions between wine components (both desirable and undesirable) and common adsorbents through computational modelling and laboratory scale fining trials in order to improve the selection of adsorbents for specific fining or taint removal applications. The binding energies for a range of volatile compounds associated with common wine faults and taints, including guaiacol, 4-methylguaiacol, cresols and syringol (smoke taint), 4-ethylguaiacol and 4-ethylphenol (Brettanomyces spoilage), 3-isobutyl-2-methoxypyrazine (IBMP; ladybird taint), geosmin and methylisoborneol (fungal taint) and trichloroanisole (cork taint), as well as volatiles associated with varietal aroma and flavour, including esters, C13-norisoprenoids and monoterpenes, or oak maturation, including cis- and trans-oak lactone, vanillin and eugenol, were calculated against a range of adsorbent substrates, including bentonite, polyvinylpolypyrrolidone (PVPP) and α-cyclodextrin (α-CD) using the density functional theory as implemented in FHI-aims, a software package for atomic scale materials modelling. The computational data suggests that α-CD could be used to selectively remove a variety of different molecules but it is less suitable for removal of IBMP. In fact, the strongest interaction comes from materials with strong hydrogen bonding systems, such as eugenol and vanillin. PVPP is a purely hydrogen-bonding sponge. It actively excludes substrates which do not hydrogen bond very well; thus, it has a very high selectivity for vanillin, and other molecules with pendant hydroxyl functionalities in a non-sterically limited environment (such as certain phenols). This presentation will comprise results from computational modelling experiments and fining experiments conducted in the laboratory. Quantitative chemical analysis of wine volatiles before and after fining treatment enables predictions based on computational approaches to be evaluated.

1. Castellari, M., Versari, A., Fabiani, A., Parpinello, G.P. and Galassi, S. (2001) Removal of ochratoxin A in red wines by means of absorption treatments with commercial fining agents. Journal of Agricultural and Food Chemistry, 49, 3917–3921.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Julie Culbert*, Christopher Hendon, Kerry Wilkinson

*University of Adelaide

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

Comparison of fortified, sfursat and passito winemaking techniques for the enhancement of the oenological potential of the black grape cultivar Moscato nero d’Acqui (Vitis vinifera L.)

One of the key factors of the economical development of viticulture and wine industry in specific limited areas is the exploitation of ancient, local grape varieties. Therefore, in recent years the growing interest to rediscover minor varieties, previously cultivated, has promoted many studies. With this regard, the focus of this study was the Vitis vinifera L. cultivar Moscato nero d’Acqui, nowadays found only in old vineyards in the Acqui zone (North-West Italy). In particular, the aims of this work were: i) to investigate secondary metabolites profile of the grapes, and ii) to evaluate the attitude to the production of special wines.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.