Macrowine 2021
IVES 9 IVES Conference Series 9 Use of computational modelling for selecting adsorbents for improved fining of wine

Use of computational modelling for selecting adsorbents for improved fining of wine

Abstract

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds. Computational modelling techniques have not previously been exploited by the wine sector but have been used in other fields to predict the behaviour of target compounds with selected substrates. This study aimed to better elucidate the binding interactions between wine components (both desirable and undesirable) and common adsorbents through computational modelling and laboratory scale fining trials in order to improve the selection of adsorbents for specific fining or taint removal applications. The binding energies for a range of volatile compounds associated with common wine faults and taints, including guaiacol, 4-methylguaiacol, cresols and syringol (smoke taint), 4-ethylguaiacol and 4-ethylphenol (Brettanomyces spoilage), 3-isobutyl-2-methoxypyrazine (IBMP; ladybird taint), geosmin and methylisoborneol (fungal taint) and trichloroanisole (cork taint), as well as volatiles associated with varietal aroma and flavour, including esters, C13-norisoprenoids and monoterpenes, or oak maturation, including cis- and trans-oak lactone, vanillin and eugenol, were calculated against a range of adsorbent substrates, including bentonite, polyvinylpolypyrrolidone (PVPP) and α-cyclodextrin (α-CD) using the density functional theory as implemented in FHI-aims, a software package for atomic scale materials modelling. The computational data suggests that α-CD could be used to selectively remove a variety of different molecules but it is less suitable for removal of IBMP. In fact, the strongest interaction comes from materials with strong hydrogen bonding systems, such as eugenol and vanillin. PVPP is a purely hydrogen-bonding sponge. It actively excludes substrates which do not hydrogen bond very well; thus, it has a very high selectivity for vanillin, and other molecules with pendant hydroxyl functionalities in a non-sterically limited environment (such as certain phenols). This presentation will comprise results from computational modelling experiments and fining experiments conducted in the laboratory. Quantitative chemical analysis of wine volatiles before and after fining treatment enables predictions based on computational approaches to be evaluated.

1. Castellari, M., Versari, A., Fabiani, A., Parpinello, G.P. and Galassi, S. (2001) Removal of ochratoxin A in red wines by means of absorption treatments with commercial fining agents. Journal of Agricultural and Food Chemistry, 49, 3917–3921.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Julie Culbert*, Christopher Hendon, Kerry Wilkinson

*University of Adelaide

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels
(unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L.