Macrowine 2021
IVES 9 IVES Conference Series 9 Use of computational modelling for selecting adsorbents for improved fining of wine

Use of computational modelling for selecting adsorbents for improved fining of wine

Abstract

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds. Computational modelling techniques have not previously been exploited by the wine sector but have been used in other fields to predict the behaviour of target compounds with selected substrates. This study aimed to better elucidate the binding interactions between wine components (both desirable and undesirable) and common adsorbents through computational modelling and laboratory scale fining trials in order to improve the selection of adsorbents for specific fining or taint removal applications. The binding energies for a range of volatile compounds associated with common wine faults and taints, including guaiacol, 4-methylguaiacol, cresols and syringol (smoke taint), 4-ethylguaiacol and 4-ethylphenol (Brettanomyces spoilage), 3-isobutyl-2-methoxypyrazine (IBMP; ladybird taint), geosmin and methylisoborneol (fungal taint) and trichloroanisole (cork taint), as well as volatiles associated with varietal aroma and flavour, including esters, C13-norisoprenoids and monoterpenes, or oak maturation, including cis- and trans-oak lactone, vanillin and eugenol, were calculated against a range of adsorbent substrates, including bentonite, polyvinylpolypyrrolidone (PVPP) and α-cyclodextrin (α-CD) using the density functional theory as implemented in FHI-aims, a software package for atomic scale materials modelling. The computational data suggests that α-CD could be used to selectively remove a variety of different molecules but it is less suitable for removal of IBMP. In fact, the strongest interaction comes from materials with strong hydrogen bonding systems, such as eugenol and vanillin. PVPP is a purely hydrogen-bonding sponge. It actively excludes substrates which do not hydrogen bond very well; thus, it has a very high selectivity for vanillin, and other molecules with pendant hydroxyl functionalities in a non-sterically limited environment (such as certain phenols). This presentation will comprise results from computational modelling experiments and fining experiments conducted in the laboratory. Quantitative chemical analysis of wine volatiles before and after fining treatment enables predictions based on computational approaches to be evaluated.

1. Castellari, M., Versari, A., Fabiani, A., Parpinello, G.P. and Galassi, S. (2001) Removal of ochratoxin A in red wines by means of absorption treatments with commercial fining agents. Journal of Agricultural and Food Chemistry, 49, 3917–3921.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Julie Culbert*, Christopher Hendon, Kerry Wilkinson

*University of Adelaide

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts.

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.