Macrowine 2021
IVES 9 IVES Conference Series 9 Use of computational modelling for selecting adsorbents for improved fining of wine

Use of computational modelling for selecting adsorbents for improved fining of wine

Abstract

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds. Computational modelling techniques have not previously been exploited by the wine sector but have been used in other fields to predict the behaviour of target compounds with selected substrates. This study aimed to better elucidate the binding interactions between wine components (both desirable and undesirable) and common adsorbents through computational modelling and laboratory scale fining trials in order to improve the selection of adsorbents for specific fining or taint removal applications. The binding energies for a range of volatile compounds associated with common wine faults and taints, including guaiacol, 4-methylguaiacol, cresols and syringol (smoke taint), 4-ethylguaiacol and 4-ethylphenol (Brettanomyces spoilage), 3-isobutyl-2-methoxypyrazine (IBMP; ladybird taint), geosmin and methylisoborneol (fungal taint) and trichloroanisole (cork taint), as well as volatiles associated with varietal aroma and flavour, including esters, C13-norisoprenoids and monoterpenes, or oak maturation, including cis- and trans-oak lactone, vanillin and eugenol, were calculated against a range of adsorbent substrates, including bentonite, polyvinylpolypyrrolidone (PVPP) and α-cyclodextrin (α-CD) using the density functional theory as implemented in FHI-aims, a software package for atomic scale materials modelling. The computational data suggests that α-CD could be used to selectively remove a variety of different molecules but it is less suitable for removal of IBMP. In fact, the strongest interaction comes from materials with strong hydrogen bonding systems, such as eugenol and vanillin. PVPP is a purely hydrogen-bonding sponge. It actively excludes substrates which do not hydrogen bond very well; thus, it has a very high selectivity for vanillin, and other molecules with pendant hydroxyl functionalities in a non-sterically limited environment (such as certain phenols). This presentation will comprise results from computational modelling experiments and fining experiments conducted in the laboratory. Quantitative chemical analysis of wine volatiles before and after fining treatment enables predictions based on computational approaches to be evaluated.

1. Castellari, M., Versari, A., Fabiani, A., Parpinello, G.P. and Galassi, S. (2001) Removal of ochratoxin A in red wines by means of absorption treatments with commercial fining agents. Journal of Agricultural and Food Chemistry, 49, 3917–3921.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Julie Culbert*, Christopher Hendon, Kerry Wilkinson

*University of Adelaide

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Light-struck taste in white wine: enological approach for its prevention

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage.

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).

Influence of toasting oak wood on ellagitannin structures

Ellagitannins (ETs) have been reported to be the main phenolic compounds found in oak wood. These compounds, belonging to the hydrolysable tannin class of polyphenols, are esters of hexahydroxydiphenic acid (HHDP) and a polyol, usually glucose or quinic acid. They own their name to their capacity to be hydrolysed and liberate ellagic acid and they have an impact on astringency and bitterness sensation, which is strongly dependant on their structure. The toasting phase is particularly crucial in barrels fabrication and influences wood composition.

Intelligent article to control the internal pressure in continue in bottles

An intelligent packaging might, among others, provide information and allow monitoring of the quality of the packed product or its surrounding environment. A recent project on micro-flow wine bottles closed with aluminium screw cap and tightness liner, highlighted the importance of monitoring the internal overpressure continuously, in real-time and at least for 72 hours, since the internal pressure on the tightness liner and the micro-flow are related. Real-time and continuous measurements are not the standard methods of measurement of the overpressure, yet. The most used equipment for the determination of the pressure in wine bottle is the aphrometer, a destructive device that supplies a single value of pressure.

Ageing of Sauvignon Blanc white wines with Specific Inactivated Dry Yeasts: Effect on physical and chemical characteristics

Del Barrio-Galán, R.a, b, Gómez-Parrini, A.a, Peña-Neira, A.b a Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las condes, Santiago, Chile b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile It is well known that polysaccharides, mainly mannoproteins, play an important role on physical, chemical and sensory quality of wines. The ageing of white wines on lees is used in order to release higher amounts of polysaccharides by the autolytic processes in order to obtain higher-quality wines. However, this technique is too slow, because the temperature and pH conditions are not the most suitable for this process. In addition, it can also involve certain disadvantages such as a greater demand on winery resources, a longer period of wine storage, the appearance of reduction notes and some microbiological alterations.