Macrowine 2021
IVES 9 IVES Conference Series 9 Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Abstract

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process. While Saccharomyces cerevisiae seems to be limited in their expression of glycosidase enzymes required to cleave and liberate the aroma compounds from their precursors, different non-Saccharomyces yeast genera show more prominence. Due to the infrequent and scarce occurrence of Saccharomyces cerevisiae in the vineyard and grape samples, many scientific findings report that spontaneous alcoholic fermentation is dominantly conducted by yeast strains originating from the winery environment rather than from the vineyard. However, recent advancements of modern genetic tools have elucidated site-specific microbiota on grapes from different vineyards and vintages. Their role in fermented wine has not yet been clarified. This study aims to shed light on the roles of vineyard and winery microbiomes in wine fermentations in relation to fermentation dynamics, aroma formation and sensory perception. Riesling grapes from five different Riesling vineyards in the Pfalz region, Germany were picked aseptically during the 2015 vintage. Pilot-scale spontaneous fermentations with triplicates were conducted with aseptically managed winemaking. Fermentation progress was monitored by density measurements and FTIR-spectroscopy. Yeast population dynamics in the fermentations were monitored and identified with next-generation sequencing technology. Descriptive analysis of the wines was used to evaluate the changes in aroma and flavor sensory profiles. Results show plausible promise in both the microbial difference occurring in the vineyard as well as impact of the winery derived microbiome. Modulation of aroma and taste was observed and correlated with the occurrence of specific yeast species.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Kimmo Sirén*, M Thomas P Gilbert, Sarah S.T. Mak, Ulrich Fischer

*DLR RheinPfalz

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

Grape byproducts as source of resveratrol oligomers for the development of antifungal extracts

Grape canes are a non-recycled byproduct of wine industry (1-5 tons per hectare per year) containing valuable phytochemicals of medicine and agronomical interest. Resveratrol and wine polyphenols are known to exert a plethora of health-promoting effects including antioxidant capacity, cardioprotection, anticancer activity, anti-inflammatory effects, and estrogenic/antiestrogenic properties (Guerrero et al. 2009). Additionally, resveratrol is a major phytoalexin produced by plants in response to various stresses and promotes disease resistance (Chang et al. 2011). Our project aims to develop polyphenol-rich grape cane extracts to fight phytopathogenic or clinically relevant fungi. We initiate the project with the development of analytical methods to analyze resveratrol mono- and oligomers (dimers, trimers and tetramers) from grape canes and we evaluate their potential activity against clinically relevant opportunistic fungal pathogens (Houillé et al. 2014).

Quantification of red wine phenolics using ultraviolet-visible, near and mid-infrared spectroscopy combined with chemometrics

The use of multivariate statistics to correlate chemical data to spectral information seems as a valid alternative for the quantification of red wine phenolics. The advantages of these techniques include simplicity and cost effectiveness together with the limited time of analysis required. Although many
publications on this subject are nowadays available in the literature most of them only reported feasibility
studies. In this study 400 samples from thirteen fermentations including five different cultivars plus 150
wine samples from a varying number of vintages were submitted to spectrophotometric and chromatographic phenolic analysis.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Champagne regulation allows winegrowers to stock small amounts of still wines in order to compensate vintages’ quality shifts mainly due to climate variations. According to their technical requirements and house style some Champagne producers (commonly named “Champagne houses”) use these stored wines in the blend in order to introduce an element of complexity. These wines possess the particularity of being aged on fine lees in thermo-regulated stainless steel tanks. The Champagne house of Veuve Clicquot Ponsardin has several wines stored this way.