Macrowine 2021
IVES 9 IVES Conference Series 9 Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Abstract

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process. While Saccharomyces cerevisiae seems to be limited in their expression of glycosidase enzymes required to cleave and liberate the aroma compounds from their precursors, different non-Saccharomyces yeast genera show more prominence. Due to the infrequent and scarce occurrence of Saccharomyces cerevisiae in the vineyard and grape samples, many scientific findings report that spontaneous alcoholic fermentation is dominantly conducted by yeast strains originating from the winery environment rather than from the vineyard. However, recent advancements of modern genetic tools have elucidated site-specific microbiota on grapes from different vineyards and vintages. Their role in fermented wine has not yet been clarified. This study aims to shed light on the roles of vineyard and winery microbiomes in wine fermentations in relation to fermentation dynamics, aroma formation and sensory perception. Riesling grapes from five different Riesling vineyards in the Pfalz region, Germany were picked aseptically during the 2015 vintage. Pilot-scale spontaneous fermentations with triplicates were conducted with aseptically managed winemaking. Fermentation progress was monitored by density measurements and FTIR-spectroscopy. Yeast population dynamics in the fermentations were monitored and identified with next-generation sequencing technology. Descriptive analysis of the wines was used to evaluate the changes in aroma and flavor sensory profiles. Results show plausible promise in both the microbial difference occurring in the vineyard as well as impact of the winery derived microbiome. Modulation of aroma and taste was observed and correlated with the occurrence of specific yeast species.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Kimmo Sirén*, M Thomas P Gilbert, Sarah S.T. Mak, Ulrich Fischer

*DLR RheinPfalz

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.

Ellagitannins and flavano-ellagitannins: concentration ranges in different areas and sensory evaluation

C-Glucosidic ellagitannins, which are the main polyphenolic compounds in oak heartwood, are extracted by wine during aging in oak barrels. Although such maturing of alcoholic beverages in oak barrels is a multi-centennial practice, very little is known on the impact of these ellagitannins on the organoleptic properties of red wine. The objectives of the present investigation were (i) to isolate oak ellagitannins and to hemisynthesize some made-in-wine flavano-ellagitannins, such as acutissimin A; (ii) to analyse their concentration ranges depending on the cultivar area and (iii) to evaluate their sensory impact on the basis of their human threshold concentrations and dose/response relationships in different types of solutions.

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.