Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

Abstract

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015). The present paper shows the effects of the new vacuum evaporation method on chemical and sensory properties of must and wine in prototype trials at pilot scale using white and red winemaking protocols during three harvests. For white wine, must of Chasselas grapes was concentrated up to 15% after clarification with the new vacuum evaporation method and the effects on the wine quality was compared to concentration by inverse osmosis and sugar addition. For red wine, juice was drained from destemmed and crushed red Humagne rouge grapes at a third to half of the initial weight. This non-clarified juice was concentrated up to 30% with the new vacuum evaporation method before adding it back to the initial grapes for fermentation and maceration. During the concentrations of must, sugar and nitrogen compounds were increased proportionally. Acid compounds showed a more variable behaviour. Malic acid was generally increased similar to sugar compounds whereas tartaric acid decreased or increased before decreasing at higher concentration levels. The variable behaviour of tartaric acid can be linked to the equilibrium with potassium ions. The wines produced with the new evaporation method showed generally higher acidity than the control wines with sugar addition consistent with the results from the must analysis. White wines also showed an increase in phenolic compounds. In the sensory evaluation the white wines produced with the new evaporation method were generally preferred compared to the control wines with sugar addition. They were recognised for significantly more fruity aromas. The wines produced with inverse osmosis were rated intermediate. For red wines the sensory evaluation showed no clear trend so far with results ranging from insignificant differences to preference for the wine produced with the new evaporation method due to smoother tannins. Generally the results from these pilot trials are consistent with those from traditional evaporation methods. This shows the feasibility of applying the new vacuum evaporation method to white and red wine production. Its robustness towards high sugar levels and non-clarified grape juice together with the simplicity of the construction and the process handling make this new method a promising development for the wine production.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Johannes Rösti*, Dieter Baldinger, Heinrich Feichtinger

*Agroscope

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN).

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.