Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

Abstract

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015). The present paper shows the effects of the new vacuum evaporation method on chemical and sensory properties of must and wine in prototype trials at pilot scale using white and red winemaking protocols during three harvests. For white wine, must of Chasselas grapes was concentrated up to 15% after clarification with the new vacuum evaporation method and the effects on the wine quality was compared to concentration by inverse osmosis and sugar addition. For red wine, juice was drained from destemmed and crushed red Humagne rouge grapes at a third to half of the initial weight. This non-clarified juice was concentrated up to 30% with the new vacuum evaporation method before adding it back to the initial grapes for fermentation and maceration. During the concentrations of must, sugar and nitrogen compounds were increased proportionally. Acid compounds showed a more variable behaviour. Malic acid was generally increased similar to sugar compounds whereas tartaric acid decreased or increased before decreasing at higher concentration levels. The variable behaviour of tartaric acid can be linked to the equilibrium with potassium ions. The wines produced with the new evaporation method showed generally higher acidity than the control wines with sugar addition consistent with the results from the must analysis. White wines also showed an increase in phenolic compounds. In the sensory evaluation the white wines produced with the new evaporation method were generally preferred compared to the control wines with sugar addition. They were recognised for significantly more fruity aromas. The wines produced with inverse osmosis were rated intermediate. For red wines the sensory evaluation showed no clear trend so far with results ranging from insignificant differences to preference for the wine produced with the new evaporation method due to smoother tannins. Generally the results from these pilot trials are consistent with those from traditional evaporation methods. This shows the feasibility of applying the new vacuum evaporation method to white and red wine production. Its robustness towards high sugar levels and non-clarified grape juice together with the simplicity of the construction and the process handling make this new method a promising development for the wine production.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Johannes Rösti*, Dieter Baldinger, Heinrich Feichtinger

*Agroscope

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Maturation of Agiorgitiko (Vitis vinifera) red wine on its wine lees: Impact on its phenolic composition

Maturation of wine on lees (often referred as sur lie) is a common practice applied by many winemakers around the world. In the past this method was applied mainly on white and/or sparkling wine production but recently also to red wine production. In our experiment, we matured red wine on wine lees of two origins: a) Light wine lees, collected after the completion of the alcoholic fermentation, b) Heavy lees, collected after the completion of the malolactic fermentation. The lees were free of off-odors and were added in the red wine in percentage 3% and 8%, simulating common winemaking addition. The maturation lasted in total six months and samples were collected for analysis after one, three and six months. During storage the lees were stirred.

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.