Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

Abstract

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015). The present paper shows the effects of the new vacuum evaporation method on chemical and sensory properties of must and wine in prototype trials at pilot scale using white and red winemaking protocols during three harvests. For white wine, must of Chasselas grapes was concentrated up to 15% after clarification with the new vacuum evaporation method and the effects on the wine quality was compared to concentration by inverse osmosis and sugar addition. For red wine, juice was drained from destemmed and crushed red Humagne rouge grapes at a third to half of the initial weight. This non-clarified juice was concentrated up to 30% with the new vacuum evaporation method before adding it back to the initial grapes for fermentation and maceration. During the concentrations of must, sugar and nitrogen compounds were increased proportionally. Acid compounds showed a more variable behaviour. Malic acid was generally increased similar to sugar compounds whereas tartaric acid decreased or increased before decreasing at higher concentration levels. The variable behaviour of tartaric acid can be linked to the equilibrium with potassium ions. The wines produced with the new evaporation method showed generally higher acidity than the control wines with sugar addition consistent with the results from the must analysis. White wines also showed an increase in phenolic compounds. In the sensory evaluation the white wines produced with the new evaporation method were generally preferred compared to the control wines with sugar addition. They were recognised for significantly more fruity aromas. The wines produced with inverse osmosis were rated intermediate. For red wines the sensory evaluation showed no clear trend so far with results ranging from insignificant differences to preference for the wine produced with the new evaporation method due to smoother tannins. Generally the results from these pilot trials are consistent with those from traditional evaporation methods. This shows the feasibility of applying the new vacuum evaporation method to white and red wine production. Its robustness towards high sugar levels and non-clarified grape juice together with the simplicity of the construction and the process handling make this new method a promising development for the wine production.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Johannes Rösti*, Dieter Baldinger, Heinrich Feichtinger

*Agroscope

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

The phenolic profiles of little known red grape cultivars, namely Garnacho, Moribel and Tinto Fragoso, which are autochthonous from the Spanish region of La Mancha (ca. 600,000 ha of vineyards) have been studied over the consecutive seasons of years 2013 and 2014. The study was separately performed over the skins, the pulp and the seeds, and comprised the following phenolic types: anthocyanins, flavonols, hydroxycinnamic acid derivatives (HCADs), total proanthocyanidins (PAs) and their structural features. The selected grape cultivars belong to the Vine Germplasm Bank created in this region in order to preserve the great diversity of genotypes grown in La Mancha.

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.

Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Anthocyanin accumulation and extractability were studied in Tannat, Cabernet Sauvignon and Merlot grapes produced in the south of Uruguay in two consecutive seasons. Typical cultivation situations employed in the region for each variety were considered. A follow-up was carried out, considering 60 plants per vineyard, and the harvest was determined according to the technological indices of maturity. Samples of grapes were taken in duplicate in each vineyard periodically along grape maturation. The basic composition, polyphenolic potential and anthocyanin extractability were determined. Also, half of grapes were frozen and later peeled; skin extractions over 24 hs with a solution of 12% ethanol and pH 3.2 were carried out. The anthocyanin contents of the extracts obtained were determined by HPLC-DAD. The levels of anthocyanins reached the highest values before technological maturity. Anthocyanin extractability had a decrease during grape maturation.

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.