Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of commercial enological tannins and its effect on human saliva diffusion

Characterization of commercial enological tannins and its effect on human saliva diffusion

Abstract

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals. One of the most important properties of TECs correspond to its contribution to the astringency (Zamora, 2003). Astringency, a sensation that is described as a puckering, rough, or drying mouth-feel, has been associated with interactions between some phenolic compounds (tannins) and salivary proteins (Bacon and Rhodes, 2000). A wide spectrum of enological tannins is now available on the market, classified mainly according to the enological properties. However, the tannins’ chemical nature is not always clearly defined. Furthermore, the effect of these on saliva is unknown. For that reason, the aim of this work was the chemical characterization of eleven commercial tannins sold for enological use. Likewise, we examined the effect of TECs on a physicochemical property of the salivary protein, namely, the mode of diffusion on cellulose membranes (Obreque-Slier et al., 2010). In this study, eleven enological tannins were characterized by classification into three groups according HPLC-DAD chromatography and spectroscopic analysis: enological products composed of proanthocyanidins, hydrolyzable, and the mixture of both types of tannins. Within each group, tannin composition varied greatly, mainly defined by the botanical origin of each commercial product. Similarly, when saliva was mixed with aliquots of increasing concentrations of TECs, we observed a progressive decrease in the blue-stained background of the distribution area of the salivary protein. The intensity of this restriction was in close relationship with the type of TECs. Finally, it was observed that certain TECs do not showed a effect on saliva diffusion on cellulose membranes.

References 1.- Bacon J., Rhodes M. 2000. Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it. J Agric Food Chem 48, 838-843. 2.- Obreque-Slier E., Peña-Neira A., López-Solís R., Ramírez-Escudero C., Zamora-Marín F. 2009. Phenolic characterization of commercial enological tannins. Eur Food Res Technol 229, 859-866. 3.- Obreque-Slier E., Peña-Neira A., López-Solís, R. 2010. Quantitative determination of interactions between a tannin and a model protein using diffusion and precipitation assays on cellulose membranes. J Agric Food Chem 58, 8375-8379. 4.- Zamora, F. 2003. Elaboración y crianza del vino tinto: Aspectos científicos y prácticos. Madrid, España. Ediciones Mundi Prensa. 225p. Acknowledgments This study was supported by grant Fondecyt-Chile 1150240.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Elías Obreque Slier*, Álvaro Peña-Neira, Dante Munoz, Gina Vazallo, Marcela Medel, Remigio López

*Universidad de Chile

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Elicitors used as a tool to increase stilbenes in grapes and wines

The economic importance of grapevine as a crop plant makes Vitis vinífera a good model system to study the improvement of the nutraceutical properties of food products (Vezulli et al. 2007). Stilbenes in general, and trans-resveratrol in particular, have been reported to be responsible for various beneficial effects. Resveratrol´s biological properties include antibacteria and antifungal effects, as well as cardioprotective, neuroprotective and anticâncer actions (Guerrero et al. 2010 ). Stilbenes can be induced by biotic and abiotic elicitors since they are phytoalexins (Bavaresco et al. 2001).

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.