Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of commercial enological tannins and its effect on human saliva diffusion

Characterization of commercial enological tannins and its effect on human saliva diffusion

Abstract

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals. One of the most important properties of TECs correspond to its contribution to the astringency (Zamora, 2003). Astringency, a sensation that is described as a puckering, rough, or drying mouth-feel, has been associated with interactions between some phenolic compounds (tannins) and salivary proteins (Bacon and Rhodes, 2000). A wide spectrum of enological tannins is now available on the market, classified mainly according to the enological properties. However, the tannins’ chemical nature is not always clearly defined. Furthermore, the effect of these on saliva is unknown. For that reason, the aim of this work was the chemical characterization of eleven commercial tannins sold for enological use. Likewise, we examined the effect of TECs on a physicochemical property of the salivary protein, namely, the mode of diffusion on cellulose membranes (Obreque-Slier et al., 2010). In this study, eleven enological tannins were characterized by classification into three groups according HPLC-DAD chromatography and spectroscopic analysis: enological products composed of proanthocyanidins, hydrolyzable, and the mixture of both types of tannins. Within each group, tannin composition varied greatly, mainly defined by the botanical origin of each commercial product. Similarly, when saliva was mixed with aliquots of increasing concentrations of TECs, we observed a progressive decrease in the blue-stained background of the distribution area of the salivary protein. The intensity of this restriction was in close relationship with the type of TECs. Finally, it was observed that certain TECs do not showed a effect on saliva diffusion on cellulose membranes.

References 1.- Bacon J., Rhodes M. 2000. Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it. J Agric Food Chem 48, 838-843. 2.- Obreque-Slier E., Peña-Neira A., López-Solís R., Ramírez-Escudero C., Zamora-Marín F. 2009. Phenolic characterization of commercial enological tannins. Eur Food Res Technol 229, 859-866. 3.- Obreque-Slier E., Peña-Neira A., López-Solís, R. 2010. Quantitative determination of interactions between a tannin and a model protein using diffusion and precipitation assays on cellulose membranes. J Agric Food Chem 58, 8375-8379. 4.- Zamora, F. 2003. Elaboración y crianza del vino tinto: Aspectos científicos y prácticos. Madrid, España. Ediciones Mundi Prensa. 225p. Acknowledgments This study was supported by grant Fondecyt-Chile 1150240.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Elías Obreque Slier*, Álvaro Peña-Neira, Dante Munoz, Gina Vazallo, Marcela Medel, Remigio López

*Universidad de Chile

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

The effect of Nitrogen and Sulphur foliar applications in hot climates

ine nitrogen deficiency can negatively influence the aroma profile and ageing potential of white wines. Canopy management can alter vine microclimate, affect the nitrogen availability and influence the response of leaf senescence. Increasing the nitrogen availability to vines can increase the Yeast Assimilable Nitrogen (YAN) levels in harvested fruit and wine. Studies show that foliar nitrogen and sulphur applications at véraison, on low YAN Sauvignon blanc grapes have an effect on the level of amino acids (Jreij et al. 2009) and on S-containing compounds such as glutathione and thiols (Lacroux et al. 2008), which in turn can influence the formation of major volatiles and the aroma profile of the wine.

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.

Fining-Derived Allergens in Wine: from Detection to Quantification

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition).

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.