Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of commercial enological tannins and its effect on human saliva diffusion

Characterization of commercial enological tannins and its effect on human saliva diffusion

Abstract

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals. One of the most important properties of TECs correspond to its contribution to the astringency (Zamora, 2003). Astringency, a sensation that is described as a puckering, rough, or drying mouth-feel, has been associated with interactions between some phenolic compounds (tannins) and salivary proteins (Bacon and Rhodes, 2000). A wide spectrum of enological tannins is now available on the market, classified mainly according to the enological properties. However, the tannins’ chemical nature is not always clearly defined. Furthermore, the effect of these on saliva is unknown. For that reason, the aim of this work was the chemical characterization of eleven commercial tannins sold for enological use. Likewise, we examined the effect of TECs on a physicochemical property of the salivary protein, namely, the mode of diffusion on cellulose membranes (Obreque-Slier et al., 2010). In this study, eleven enological tannins were characterized by classification into three groups according HPLC-DAD chromatography and spectroscopic analysis: enological products composed of proanthocyanidins, hydrolyzable, and the mixture of both types of tannins. Within each group, tannin composition varied greatly, mainly defined by the botanical origin of each commercial product. Similarly, when saliva was mixed with aliquots of increasing concentrations of TECs, we observed a progressive decrease in the blue-stained background of the distribution area of the salivary protein. The intensity of this restriction was in close relationship with the type of TECs. Finally, it was observed that certain TECs do not showed a effect on saliva diffusion on cellulose membranes.

References 1.- Bacon J., Rhodes M. 2000. Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it. J Agric Food Chem 48, 838-843. 2.- Obreque-Slier E., Peña-Neira A., López-Solís R., Ramírez-Escudero C., Zamora-Marín F. 2009. Phenolic characterization of commercial enological tannins. Eur Food Res Technol 229, 859-866. 3.- Obreque-Slier E., Peña-Neira A., López-Solís, R. 2010. Quantitative determination of interactions between a tannin and a model protein using diffusion and precipitation assays on cellulose membranes. J Agric Food Chem 58, 8375-8379. 4.- Zamora, F. 2003. Elaboración y crianza del vino tinto: Aspectos científicos y prácticos. Madrid, España. Ediciones Mundi Prensa. 225p. Acknowledgments This study was supported by grant Fondecyt-Chile 1150240.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Elías Obreque Slier*, Álvaro Peña-Neira, Dante Munoz, Gina Vazallo, Marcela Medel, Remigio López

*Universidad de Chile

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Elicitors used as a tool to increase stilbenes in grapes and wines

The economic importance of grapevine as a crop plant makes Vitis vinífera a good model system to study the improvement of the nutraceutical properties of food products (Vezulli et al. 2007). Stilbenes in general, and trans-resveratrol in particular, have been reported to be responsible for various beneficial effects. Resveratrol´s biological properties include antibacteria and antifungal effects, as well as cardioprotective, neuroprotective and anticâncer actions (Guerrero et al. 2010 ). Stilbenes can be induced by biotic and abiotic elicitors since they are phytoalexins (Bavaresco et al. 2001).

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.