Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of commercial enological tannins and its effect on human saliva diffusion

Characterization of commercial enological tannins and its effect on human saliva diffusion

Abstract

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals. One of the most important properties of TECs correspond to its contribution to the astringency (Zamora, 2003). Astringency, a sensation that is described as a puckering, rough, or drying mouth-feel, has been associated with interactions between some phenolic compounds (tannins) and salivary proteins (Bacon and Rhodes, 2000). A wide spectrum of enological tannins is now available on the market, classified mainly according to the enological properties. However, the tannins’ chemical nature is not always clearly defined. Furthermore, the effect of these on saliva is unknown. For that reason, the aim of this work was the chemical characterization of eleven commercial tannins sold for enological use. Likewise, we examined the effect of TECs on a physicochemical property of the salivary protein, namely, the mode of diffusion on cellulose membranes (Obreque-Slier et al., 2010). In this study, eleven enological tannins were characterized by classification into three groups according HPLC-DAD chromatography and spectroscopic analysis: enological products composed of proanthocyanidins, hydrolyzable, and the mixture of both types of tannins. Within each group, tannin composition varied greatly, mainly defined by the botanical origin of each commercial product. Similarly, when saliva was mixed with aliquots of increasing concentrations of TECs, we observed a progressive decrease in the blue-stained background of the distribution area of the salivary protein. The intensity of this restriction was in close relationship with the type of TECs. Finally, it was observed that certain TECs do not showed a effect on saliva diffusion on cellulose membranes.

References 1.- Bacon J., Rhodes M. 2000. Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it. J Agric Food Chem 48, 838-843. 2.- Obreque-Slier E., Peña-Neira A., López-Solís R., Ramírez-Escudero C., Zamora-Marín F. 2009. Phenolic characterization of commercial enological tannins. Eur Food Res Technol 229, 859-866. 3.- Obreque-Slier E., Peña-Neira A., López-Solís, R. 2010. Quantitative determination of interactions between a tannin and a model protein using diffusion and precipitation assays on cellulose membranes. J Agric Food Chem 58, 8375-8379. 4.- Zamora, F. 2003. Elaboración y crianza del vino tinto: Aspectos científicos y prácticos. Madrid, España. Ediciones Mundi Prensa. 225p. Acknowledgments This study was supported by grant Fondecyt-Chile 1150240.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Elías Obreque Slier*, Álvaro Peña-Neira, Dante Munoz, Gina Vazallo, Marcela Medel, Remigio López

*Universidad de Chile

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal.

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.