Macrowine 2021
IVES 9 IVES Conference Series 9 Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

Abstract

The aromatic complexity of a wine results from the perception of the association of volatile molecules and each aroma can be categorized into different families. The “green” aromas family in red wines has retained our attention by its close link with the fruity perception. In that study, the “green” olfactory concept of red wines was considered through a strategy combining both sensory analysis and hyphenated chromatographic techniques including HPLC and MDGC (Multidimensional Gas Chromatography). The aromatic space of this concept was specified by lexical generation through a free association task on 22 selected wines by a panel of wine experts. Then, 70 French red wines were scored on the basis of the intensity of their “green” and “fruity” attributes. The relationship between these two families and chemical markers (2-methoxy-3-isobutyl, 3-isopropyl and 3-sec-butyl pyrazines and C6 alcohol compounds) was assessed. Strong anti-correlation between “green” and “fruity” was demonstrated but no significant correlations could be established with known molecular markers associated with fresh green characters. So, the contribution of other aromatic compounds was formulated in particular with the level of grape maturation. Microvinifications of Cabernet-Sauvignon grapes from Medoc vineyard harvested at two ripeness stages were done during 2014 and 2015 vintages. The so-obtained wines were extracted with organic solvents and the concentrated extracts were fractioned by semi-preparative HPLC. Among fifty fractions collected, one was particularly highlighted for its green aromas. The sensory impact of this fraction was first confirmed by omission and reconstitution tests. To determine the molecules responsible for green flavour of this fraction, GC-O (Gas Chromatography coupled with Olfactometry) and MDGC-O/Time-Of-Flight-MS were considered. 2-Methoxy-3-isobutyl-pyrazine well known as IBMP (bell pepper descriptor) was identified as one of the compounds responsible for the aroma of this fraction with two other odoriferous compounds presenting a green aroma. One belongs to terpene family, 1,8-cineole (herbs, fresh and eucalyptus descriptors), usually associated in wines with eucalyptus trees contamination. 1,8-cineole was definitively evidenced as a Vitis vinifera compound with concentrations assayed in wines from unripe grapes and other wines from Carmenet family close or higher to olfactory detection threshold (1 µg/l). 1,8-cineole concentrations were shown to decrease like IBMP during ripeness. The other compound was identified as methyl salicylate (fresh, leafy and wintergreen descriptors), a derivative of salicylic acid, sometimes quantified in wine samples at concentrations much higher than its detection threshold (40 µg/l). Supplementation tests at assayed concentrations in red wines for these two compounds exhibited a sensory impact on green aromas and a synergic effect was noticed with IBMP on the enhancement of the green flavour in red wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Xavier Poitou*, Philippe Darriet

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-
UPLC/FTMS).

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found.

Elicitors used as a tool to increase stilbenes in grapes and wines

The economic importance of grapevine as a crop plant makes Vitis vinífera a good model system to study the improvement of the nutraceutical properties of food products (Vezulli et al. 2007). Stilbenes in general, and trans-resveratrol in particular, have been reported to be responsible for various beneficial effects. Resveratrol´s biological properties include antibacteria and antifungal effects, as well as cardioprotective, neuroprotective and anticâncer actions (Guerrero et al. 2010 ). Stilbenes can be induced by biotic and abiotic elicitors since they are phytoalexins (Bavaresco et al. 2001).

Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

The phenolic profiles of little known red grape cultivars, namely Garnacho, Moribel and Tinto Fragoso, which are autochthonous from the Spanish region of La Mancha (ca. 600,000 ha of vineyards) have been studied over the consecutive seasons of years 2013 and 2014. The study was separately performed over the skins, the pulp and the seeds, and comprised the following phenolic types: anthocyanins, flavonols, hydroxycinnamic acid derivatives (HCADs), total proanthocyanidins (PAs) and their structural features. The selected grape cultivars belong to the Vine Germplasm Bank created in this region in order to preserve the great diversity of genotypes grown in La Mancha.