Macrowine 2021
IVES 9 IVES Conference Series 9 Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

Abstract

The aromatic complexity of a wine results from the perception of the association of volatile molecules and each aroma can be categorized into different families. The “green” aromas family in red wines has retained our attention by its close link with the fruity perception. In that study, the “green” olfactory concept of red wines was considered through a strategy combining both sensory analysis and hyphenated chromatographic techniques including HPLC and MDGC (Multidimensional Gas Chromatography). The aromatic space of this concept was specified by lexical generation through a free association task on 22 selected wines by a panel of wine experts. Then, 70 French red wines were scored on the basis of the intensity of their “green” and “fruity” attributes. The relationship between these two families and chemical markers (2-methoxy-3-isobutyl, 3-isopropyl and 3-sec-butyl pyrazines and C6 alcohol compounds) was assessed. Strong anti-correlation between “green” and “fruity” was demonstrated but no significant correlations could be established with known molecular markers associated with fresh green characters. So, the contribution of other aromatic compounds was formulated in particular with the level of grape maturation. Microvinifications of Cabernet-Sauvignon grapes from Medoc vineyard harvested at two ripeness stages were done during 2014 and 2015 vintages. The so-obtained wines were extracted with organic solvents and the concentrated extracts were fractioned by semi-preparative HPLC. Among fifty fractions collected, one was particularly highlighted for its green aromas. The sensory impact of this fraction was first confirmed by omission and reconstitution tests. To determine the molecules responsible for green flavour of this fraction, GC-O (Gas Chromatography coupled with Olfactometry) and MDGC-O/Time-Of-Flight-MS were considered. 2-Methoxy-3-isobutyl-pyrazine well known as IBMP (bell pepper descriptor) was identified as one of the compounds responsible for the aroma of this fraction with two other odoriferous compounds presenting a green aroma. One belongs to terpene family, 1,8-cineole (herbs, fresh and eucalyptus descriptors), usually associated in wines with eucalyptus trees contamination. 1,8-cineole was definitively evidenced as a Vitis vinifera compound with concentrations assayed in wines from unripe grapes and other wines from Carmenet family close or higher to olfactory detection threshold (1 µg/l). 1,8-cineole concentrations were shown to decrease like IBMP during ripeness. The other compound was identified as methyl salicylate (fresh, leafy and wintergreen descriptors), a derivative of salicylic acid, sometimes quantified in wine samples at concentrations much higher than its detection threshold (40 µg/l). Supplementation tests at assayed concentrations in red wines for these two compounds exhibited a sensory impact on green aromas and a synergic effect was noticed with IBMP on the enhancement of the green flavour in red wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Xavier Poitou*, Philippe Darriet

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Characterization of various groups of pyranoanthocyanins in Merlot red wine

In red wines, anthocyanins evolve during the wine-making process and ageing. They react with other compounds (such as vinylphenols, acetaldehyde, pyruvic acid…) to form a stable family of compounds called pyranoanthocyanins. Furthermore, the oxidation process can modify the anthocyanic profile of a red wine. It is also interesting to evaluate the occurrence of the different subclasses of pyranoanthocyanins and to characterize their chemical properties. The first objective of this study is to evaluate the occurrence of the different groups of pyranoanthocyanins in an oxidised Merlot wine by a centrifugal partition chromatography strategy. The second goal is to evaluate their relative impact in red wines from Bordeaux region by measuring their concentrations.

Enological evaluation of the attitude of the grapevine fumin to give varietal wines

Initiatives have been ongoing in recent years to safeguard biodiversity in the oenological sector via a process of enhancement of ancient varieties, under a pressure of a market strongly oriented towards production deriving from native vines of specific geographical zones. In that sense, Aosta Valley
(Italy) has raised the need to preserve and characterize its minority vine varieties which have the potentiality to give varietal wines. Fumin represents the 7% of the production of the region with 16 hectares of vineyards and 753 hectolitres of derived wine. Due to its large phenolic potential, strong astringency and deep colour, it has long been, and is still today, assembled or blended with other varieties as occurs, for example, for the Torrette.

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.