Macrowine 2021
IVES 9 IVES Conference Series 9 Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Abstract

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols. The Colour Intensity (CI) (DO 420/520) was also measured as an indicator for oxidation. Organic acids (e.g. malic acid), sugars (e.g. glucose) alcohol, bacteria and yeasts were also quantified as an indicator for the occurrence of fermentation processes in the stored pomace. The results show that storage at 4°C under anaerobic conditions provides the best conditions to preserve polyphenols. Only little reduction of the polyphenol concentration, as well as little oxidation were observed. The addition of SO2 alone could not prevent a strong reduction of the polyphenol concentration in samples stored at ambient temperature. The preservation of pomace under ambient temperature, without protection against oxidation (N2 or SO2) induced a high activity of bacteria and yeasts measured by the reduction of sugar contents, and the transformation of alcohol in acetic acid. Even though refrigeration is efficient against polyphenol lost, at industrial scale it is costly. Therefore in a second step, storage under aerobic and anaerobic conditions (saturation with N2) at ambient temperature in opened or close containers were tested on larger size samples (700 l) to evaluate the effect of large volumes on storage. One assumption was that the core of the heap would be protected from oxidation. The results show that temperature measured in the pomace heap at a depth of 20 cm did not differ from temperature measured at 50 cm. It was confirmed by the monitoring of the fermentation processes which were identical at the surface and deep inside the heap. The assumption regarding protection of the heap core against oxidation was thus incorrect. A strong increase of temperature during the 60 first days of storage was observed under aerobic conditions indicating the occurrence of important fermentation processes. The best way to preserve high-added value compounds in large amount of red grape pomaces is to store it in a sealed tank saturated with N2. Under these conditions the fermentation processes were very limited and the polyphenols were protected from oxidation.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Anne-Claire Silvestri*, Jean-Philippe Burdet, Laure Steiner-Convers

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes.