Macrowine 2021
IVES 9 IVES Conference Series 9 Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Abstract

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols. The Colour Intensity (CI) (DO 420/520) was also measured as an indicator for oxidation. Organic acids (e.g. malic acid), sugars (e.g. glucose) alcohol, bacteria and yeasts were also quantified as an indicator for the occurrence of fermentation processes in the stored pomace. The results show that storage at 4°C under anaerobic conditions provides the best conditions to preserve polyphenols. Only little reduction of the polyphenol concentration, as well as little oxidation were observed. The addition of SO2 alone could not prevent a strong reduction of the polyphenol concentration in samples stored at ambient temperature. The preservation of pomace under ambient temperature, without protection against oxidation (N2 or SO2) induced a high activity of bacteria and yeasts measured by the reduction of sugar contents, and the transformation of alcohol in acetic acid. Even though refrigeration is efficient against polyphenol lost, at industrial scale it is costly. Therefore in a second step, storage under aerobic and anaerobic conditions (saturation with N2) at ambient temperature in opened or close containers were tested on larger size samples (700 l) to evaluate the effect of large volumes on storage. One assumption was that the core of the heap would be protected from oxidation. The results show that temperature measured in the pomace heap at a depth of 20 cm did not differ from temperature measured at 50 cm. It was confirmed by the monitoring of the fermentation processes which were identical at the surface and deep inside the heap. The assumption regarding protection of the heap core against oxidation was thus incorrect. A strong increase of temperature during the 60 first days of storage was observed under aerobic conditions indicating the occurrence of important fermentation processes. The best way to preserve high-added value compounds in large amount of red grape pomaces is to store it in a sealed tank saturated with N2. Under these conditions the fermentation processes were very limited and the polyphenols were protected from oxidation.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Anne-Claire Silvestri*, Jean-Philippe Burdet, Laure Steiner-Convers

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.