Macrowine 2021
IVES 9 IVES Conference Series 9 Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Abstract

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols. The Colour Intensity (CI) (DO 420/520) was also measured as an indicator for oxidation. Organic acids (e.g. malic acid), sugars (e.g. glucose) alcohol, bacteria and yeasts were also quantified as an indicator for the occurrence of fermentation processes in the stored pomace. The results show that storage at 4°C under anaerobic conditions provides the best conditions to preserve polyphenols. Only little reduction of the polyphenol concentration, as well as little oxidation were observed. The addition of SO2 alone could not prevent a strong reduction of the polyphenol concentration in samples stored at ambient temperature. The preservation of pomace under ambient temperature, without protection against oxidation (N2 or SO2) induced a high activity of bacteria and yeasts measured by the reduction of sugar contents, and the transformation of alcohol in acetic acid. Even though refrigeration is efficient against polyphenol lost, at industrial scale it is costly. Therefore in a second step, storage under aerobic and anaerobic conditions (saturation with N2) at ambient temperature in opened or close containers were tested on larger size samples (700 l) to evaluate the effect of large volumes on storage. One assumption was that the core of the heap would be protected from oxidation. The results show that temperature measured in the pomace heap at a depth of 20 cm did not differ from temperature measured at 50 cm. It was confirmed by the monitoring of the fermentation processes which were identical at the surface and deep inside the heap. The assumption regarding protection of the heap core against oxidation was thus incorrect. A strong increase of temperature during the 60 first days of storage was observed under aerobic conditions indicating the occurrence of important fermentation processes. The best way to preserve high-added value compounds in large amount of red grape pomaces is to store it in a sealed tank saturated with N2. Under these conditions the fermentation processes were very limited and the polyphenols were protected from oxidation.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Anne-Claire Silvestri*, Jean-Philippe Burdet, Laure Steiner-Convers

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).

Intelligent article to control the internal pressure in continue in bottles

An intelligent packaging might, among others, provide information and allow monitoring of the quality of the packed product or its surrounding environment. A recent project on micro-flow wine bottles closed with aluminium screw cap and tightness liner, highlighted the importance of monitoring the internal overpressure continuously, in real-time and at least for 72 hours, since the internal pressure on the tightness liner and the micro-flow are related. Real-time and continuous measurements are not the standard methods of measurement of the overpressure, yet. The most used equipment for the determination of the pressure in wine bottle is the aphrometer, a destructive device that supplies a single value of pressure.

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

The present work contributes by developing a rapid sensory-directed methodology for the screening and selection of high quality wines with different sensory profiles Therefore, Verdejo and Tempranillo musts were fermented with 50 different yeasts each under controlled laboratory conditions. Resulting samples were firstly categorized according to five levels of quality by a panel of wine professionals (Sáenz-Navajas, Ballester et al. 2013). Higher quality samples were described by flash profiling by a semi-trained panel
(Valentin, Chollet et al. 2012) and most distinctive samples were screened by gas chromatography-olfactometry (GC-O) (López, Aznar et al. 2002).

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.