GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Colored hail‐nets as a tool to improve vine water status: effects on leaf gas exchange and berry quality in Italia table grape

Colored hail‐nets as a tool to improve vine water status: effects on leaf gas exchange and berry quality in Italia table grape

Abstract

Context and purpose of the study ‐ Protecting table grape vineyards with white hail‐nets is a common practice in Southern Italy. Hail‐nets result in shading effects of 10‐20 %, depending on their density and type of weave, thus they act as a low shading nets and modify the vineyard microclimate. Darker nets are more opaque to solar radiation, increasing the shading effects. Colored nets have been introduced in horticultural crops aiming to alter the amount and composition of light available at canopy level, in order to getparticular light‐induced effects on microclimate, plant physiology, growth and production. Yellow and red nets are among the most studied. However, by now, results of different studies are not always consistent with each other. The present study aimed at assessing the performance of Italia table grape grapevine under yellow and red hail‐nets, with a particular interest to the chance of modulating the microenvironment to support the vine water status under the semi‐arid conditions of Southern Italy, evaluating also the effects exerted on the grape quality.

Material and methods ‐ The study was run in 2014 and 2015, in the BT province of Apulia region, on Italia covered with white, yellow and red nets, all having mesh of about 3×5 mm. PAR, air temperature and RH were monitored in warm hours of typical days of mid‐ and late‐ July and August. Leaf gas exchange and stem water potentials were measured. Leaf area was assessed ceptometrically. At harvest, berry fresh weight, skin color, juice total soluble solid concentration (TSS) and titratable acidity (TA), main skin and pulp phenol contents, and berry antioxidant activity (AA) were determined.

Results – Respect to the white net,the colored ones reduced the PAR available for canopy (especially the red net) and increased air temperature and RH (especially the yellow net). On average, they lowered the air VPD along the canopy profile by ~10% and improved the vine water status from 33 % (yellow net) to 38 % (red net). However, this improvement did not enhance the leaf gas exchange measured at maximum PAR 2 interception (~1450 ~mol/m /s); on the contrary, the leaf transpiration, and even more the net CO2 uptake, tent to be lowered by yellow net, but not, or at a little extent, by the red net. The leaf area did not change. According to literature, yellow color depresses the transmissivity of red and blue wavelengths, active on photoreceptors that stimulate stomata opening and PSII efficiency. At harvest, on average, the patterns of berry and bunch weight were similar to those of leaf gas exchange (especially to the transpiration one); the yellow component of the skin color decreased with both colored nets; the TSS/TA ratio increased. The skin phenol contents were lowered by the red net but not, or a very little extent, by the yellow one; the berry antioxidant activity progressively decreased passing from the white to the yellow and to the red net. In conclusion, under the trial conditions, the yellow and red hail‐nets did not influence the performance of Italia grapevine in univocal way. Some responses seemed more related to their low shading effects, while others to their spectrometric effects. They rose significantly the vine water status compared to the white net, but this improvement did not enhance other physiological parameters or any berry quality attributes.

 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Laura de PALMA (1), Patrizio LIMOSANI (1), Vittorino NOVELLO (2)

(1) University of FOGGIA-SAFE, Via Napoli 25, I-71122, Foggia, Italy
(2) University of Turin-DiSAFA, Largo Braccini 2, I-10095, Grugliasco (TO), Italy

Contact the author

Keywords

Grapevine, Microenvironment, Ecophysiology, Maturity indices, Phenol contents, Berry antioxidant activity

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Contribution of seeds to red wine phenolic composition

Tannin composition is an important attribute in red wine quality, and it is therefore critical to understand the factors influencing tannin extraction during alcoholic fermentation. Tannins contribute to the mouthfeel of wines, but they also form pigmented polymers...

A comprehensive and accurate annotation for the grapevine T2T genome 

Addressing the opportunities and challenges of genomics methods in grapevine (Vitis vinifera L.) requires the development of a comprehensive and accurate reference genome and annotation. We aimed to create a new gene annotation for the PN40024 grapevine reference genome by integrating the highly accurate and complete T2T assembly and the manually curated PN40024.v4 annotation. Here, we present a novel workflow to enhance the annotation of the T2T genome by incorporating past community input found in PN40024.v4. The pipeline’s containerization will improve the workflow’s reproducibility and flexibility, facilitating its inclusion as a shared workflow on the Grapedia portal, the grapevine genomics encyclopedia.

A fine scale study of temperature variability in the Saint-Emilion area (Bordeaux, France)

As the quality and typicity of wine are influenced by the climate, it is essential to have a good knowledge of climate variability, especially with regard to temperature, which has a great impact on vine behavior and grape ripening.

Evaluation of the sensory profile of doc douro red wines through sensory traditional single-point techniques and temporal dominance methods

No other agricultural product has a stronger relationship with the soil than wine. This study aimed to characterize the sensory profile of red wines from the Douro Demarcated Region (RDD) certified as DOC Douro, through the application of Quantitative Descriptive Analysis (QDA®) and Temporal Dominance of Sensations (TDS) sensory methods. QDA® provides a complete word description for all a product’s sensory properties. The TDS, which is relatively recent in the sensory field [1], allows to evaluation and description of the evolution of the dominant sensory perceptions during the tasting of a food product.Eighteen commercial wines from different producers were evaluated, six different samples representing each of the three sub-regions of the RDD.

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.