GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Colored hail‐nets as a tool to improve vine water status: effects on leaf gas exchange and berry quality in Italia table grape

Colored hail‐nets as a tool to improve vine water status: effects on leaf gas exchange and berry quality in Italia table grape

Abstract

Context and purpose of the study ‐ Protecting table grape vineyards with white hail‐nets is a common practice in Southern Italy. Hail‐nets result in shading effects of 10‐20 %, depending on their density and type of weave, thus they act as a low shading nets and modify the vineyard microclimate. Darker nets are more opaque to solar radiation, increasing the shading effects. Colored nets have been introduced in horticultural crops aiming to alter the amount and composition of light available at canopy level, in order to getparticular light‐induced effects on microclimate, plant physiology, growth and production. Yellow and red nets are among the most studied. However, by now, results of different studies are not always consistent with each other. The present study aimed at assessing the performance of Italia table grape grapevine under yellow and red hail‐nets, with a particular interest to the chance of modulating the microenvironment to support the vine water status under the semi‐arid conditions of Southern Italy, evaluating also the effects exerted on the grape quality.

Material and methods ‐ The study was run in 2014 and 2015, in the BT province of Apulia region, on Italia covered with white, yellow and red nets, all having mesh of about 3×5 mm. PAR, air temperature and RH were monitored in warm hours of typical days of mid‐ and late‐ July and August. Leaf gas exchange and stem water potentials were measured. Leaf area was assessed ceptometrically. At harvest, berry fresh weight, skin color, juice total soluble solid concentration (TSS) and titratable acidity (TA), main skin and pulp phenol contents, and berry antioxidant activity (AA) were determined.

Results – Respect to the white net,the colored ones reduced the PAR available for canopy (especially the red net) and increased air temperature and RH (especially the yellow net). On average, they lowered the air VPD along the canopy profile by ~10% and improved the vine water status from 33 % (yellow net) to 38 % (red net). However, this improvement did not enhance the leaf gas exchange measured at maximum PAR 2 interception (~1450 ~mol/m /s); on the contrary, the leaf transpiration, and even more the net CO2 uptake, tent to be lowered by yellow net, but not, or at a little extent, by the red net. The leaf area did not change. According to literature, yellow color depresses the transmissivity of red and blue wavelengths, active on photoreceptors that stimulate stomata opening and PSII efficiency. At harvest, on average, the patterns of berry and bunch weight were similar to those of leaf gas exchange (especially to the transpiration one); the yellow component of the skin color decreased with both colored nets; the TSS/TA ratio increased. The skin phenol contents were lowered by the red net but not, or a very little extent, by the yellow one; the berry antioxidant activity progressively decreased passing from the white to the yellow and to the red net. In conclusion, under the trial conditions, the yellow and red hail‐nets did not influence the performance of Italia grapevine in univocal way. Some responses seemed more related to their low shading effects, while others to their spectrometric effects. They rose significantly the vine water status compared to the white net, but this improvement did not enhance other physiological parameters or any berry quality attributes.

 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Laura de PALMA (1), Patrizio LIMOSANI (1), Vittorino NOVELLO (2)

(1) University of FOGGIA-SAFE, Via Napoli 25, I-71122, Foggia, Italy
(2) University of Turin-DiSAFA, Largo Braccini 2, I-10095, Grugliasco (TO), Italy

Contact the author

Keywords

Grapevine, Microenvironment, Ecophysiology, Maturity indices, Phenol contents, Berry antioxidant activity

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Mousy off-flavor detection: a rapid LCMS/MS method

These days, consumers are interested in food products linked to the environment and the concept of naturalness. They prefer “free” products, such as those with no pesticide residues or no added sulfur dioxide (so2) in wines. In fact, so2 is the most widely used preservative in winemaking, as it has multiple properties at low cost: it is antioxidant, antioxidasic and antimicrobial.

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

Impact of the fumaric acid/glutathione pair addition before bottling on Cabernet Sauvignon wine quality

Over the last decades, climate change and rising temperatures have impacted the wine industry. Wines from warm regions tend to have a higher pH and lower total acidity.

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.