GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Colored hail‐nets as a tool to improve vine water status: effects on leaf gas exchange and berry quality in Italia table grape

Colored hail‐nets as a tool to improve vine water status: effects on leaf gas exchange and berry quality in Italia table grape

Abstract

Context and purpose of the study ‐ Protecting table grape vineyards with white hail‐nets is a common practice in Southern Italy. Hail‐nets result in shading effects of 10‐20 %, depending on their density and type of weave, thus they act as a low shading nets and modify the vineyard microclimate. Darker nets are more opaque to solar radiation, increasing the shading effects. Colored nets have been introduced in horticultural crops aiming to alter the amount and composition of light available at canopy level, in order to getparticular light‐induced effects on microclimate, plant physiology, growth and production. Yellow and red nets are among the most studied. However, by now, results of different studies are not always consistent with each other. The present study aimed at assessing the performance of Italia table grape grapevine under yellow and red hail‐nets, with a particular interest to the chance of modulating the microenvironment to support the vine water status under the semi‐arid conditions of Southern Italy, evaluating also the effects exerted on the grape quality.

Material and methods ‐ The study was run in 2014 and 2015, in the BT province of Apulia region, on Italia covered with white, yellow and red nets, all having mesh of about 3×5 mm. PAR, air temperature and RH were monitored in warm hours of typical days of mid‐ and late‐ July and August. Leaf gas exchange and stem water potentials were measured. Leaf area was assessed ceptometrically. At harvest, berry fresh weight, skin color, juice total soluble solid concentration (TSS) and titratable acidity (TA), main skin and pulp phenol contents, and berry antioxidant activity (AA) were determined.

Results – Respect to the white net,the colored ones reduced the PAR available for canopy (especially the red net) and increased air temperature and RH (especially the yellow net). On average, they lowered the air VPD along the canopy profile by ~10% and improved the vine water status from 33 % (yellow net) to 38 % (red net). However, this improvement did not enhance the leaf gas exchange measured at maximum PAR 2 interception (~1450 ~mol/m /s); on the contrary, the leaf transpiration, and even more the net CO2 uptake, tent to be lowered by yellow net, but not, or at a little extent, by the red net. The leaf area did not change. According to literature, yellow color depresses the transmissivity of red and blue wavelengths, active on photoreceptors that stimulate stomata opening and PSII efficiency. At harvest, on average, the patterns of berry and bunch weight were similar to those of leaf gas exchange (especially to the transpiration one); the yellow component of the skin color decreased with both colored nets; the TSS/TA ratio increased. The skin phenol contents were lowered by the red net but not, or a very little extent, by the yellow one; the berry antioxidant activity progressively decreased passing from the white to the yellow and to the red net. In conclusion, under the trial conditions, the yellow and red hail‐nets did not influence the performance of Italia grapevine in univocal way. Some responses seemed more related to their low shading effects, while others to their spectrometric effects. They rose significantly the vine water status compared to the white net, but this improvement did not enhance other physiological parameters or any berry quality attributes.

 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Laura de PALMA (1), Patrizio LIMOSANI (1), Vittorino NOVELLO (2)

(1) University of FOGGIA-SAFE, Via Napoli 25, I-71122, Foggia, Italy
(2) University of Turin-DiSAFA, Largo Braccini 2, I-10095, Grugliasco (TO), Italy

Contact the author

Keywords

Grapevine, Microenvironment, Ecophysiology, Maturity indices, Phenol contents, Berry antioxidant activity

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

L’effetto paesaggio sul sistema delle preferenze: i vini veneti tra evocazioni di consumo e determinanti di scelta

La presente relazione mira ad individuare il ruolo del paesaggio nella determinazione delle preferenze della domanda, in modo da far emergere i fattori immateriali che definiscono il valore territoriale dei vini tipici su cui far leva per le strategie di marketing. L’analisi ha riguardato vini tipici del Veneto e coinvolto soggetti non provenienti da questa Regione. Ne è emerso l’effetto amplificativo dell’immagine del paesaggio sulla qualità percepita.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.

Effects of soil and climate on wine style in the Breede River Valley of South Africa: Sauvignon blanc and Cabernet-Sauvignon

Les effets du sol et du climat sur le style de vin ont été évalués pour des vignes irriguées à deux endroits différents de la vallée de la Breede, en Afrique du Sud. L’un des 2 endroits est cependant plus froid que l’autre, principalement en raison de températures nocturnes plus basses.

How to reduce SO2 additions in wine with the aid of non-conventional yeasts

Among the factors that influence the sensory quality, style, safety, sustainability, and sense of place of a wine, the contributions of microbial biodiversity are widely becoming more recognized. Throughout winemaking, multiple biochemical reactions are performed by a myriad of different microorganisms interacting in many ways.