terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Biotic interactions 9 The invasive seaweed Rugulopteryx okamurae: an innovative plant protective extract

The invasive seaweed Rugulopteryx okamurae: an innovative plant protective extract

Abstract

Grapevine downy mildew, caused by Plasmopara viticola, is a devastating disease worldwide. Most commercially important cultivars of the European grapevine are highly susceptible and therefore require the recurrent application of synthetic fungicides to control the disease, copper being the most frequently used. However, with European Union goals to lower their usage, there is a need to develop innovative and sustainable strategies. In this respect, seaweeds have proven to have great potential as phytosanitary agents, in addition to promoting plant growth and stress-tolerance.

A greenhouse experiment was conducted to determine the effectiveness of an extract of the invasive Rugulopteryx okamurae (RO) as resistance inducer and fungicide against P. viticola. The molecular and metabolic responses of two Tempranillo clones (VN40, RJ43), together with the changes on plant physiology and soil microbiota were investigated after seaweed applications and post-pathogen inoculation.

The extract preferentially induced Jasmonic acid (JA) related genes while inhibiting Salicylic acid (SA) responsive ones. In addition, in RO treated RJ43 plants SA pathway repression became stronger under P. viticola stress, and the antagonist relation between JA/SA pathways was corroborated. The later plants accumulated more piceid and had an increased activity of antioxidant enzymes. Moreover, RO slightly modified soil properties and soil fungal composition, the nematophagous biological control agent Harposporium being particularly high at seaweed treated RJ soils. Importantly, disease severity was reduced in RO treated plants indicating its ability to promote grapevine protection. All results suggest Ruguloperyx extract´s potential as palliative against P. viticola.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Iratxe Zarraonaindia1,2*, Asier Cámara1, Juan José Córdoba-Granados3, Usue Pérez-López4, Enrico Cretazzo3, Amaia Mena-Petite5, Maite Lacuesta5, Ana Diez6, Emma Cantos-Villar3

1 Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa (Bizkaia), Spain
2 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
3 Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) Rancho de la Merced, Consejería de Agricultura, Pesca, Agua y Desarrollo Rural, Junta de Andalucía, Cádiz, Spain
4 Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, (UPV/EHU), Leioa (Bizkaia), Spain
5 Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz (Araba), Spain
6 Neiker, Plant Protection and Production department, Campus Agroalimentario de Arkaute – E-01080 Vitoria-Gasteiz, Spain

Contact the author*

Keywords

Plasmopara viticola, Rugulopteryx okamurae, biostimulator, fungicide, microbiota

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Untangling belowground response of grapevines to cover crop competition

Cover crops are planted in vineyards for multiple benefits including soil conservation, weed management, regulation of grapevine vegetative growth

Amphora Wines: To Pitch Or Not To Pitch

Amphora wines are known in Portugal as Vinhos de Talha. In this technology, alcoholic fermentation takes place in clay vessels that traditionally were pitched inside using pine pitch. Vinhos de Talha has a distinctive sensorial profile, due to the ancestral technique of vinification. However nowadays, some clay vessels are impermeabilized with other materials than pitch, such as bee wax and mainly epoxy resins.

FERMENTATION POTENTIAL OF INDIGENOUS NON-SACCHAROMYCES YEASTS ISOLATED FROM MARAŠTINA GRAPES OF CROATIAN VINEYARDS

The interest in indigenous non-Saccharomyces yeast for use in wine production has increased in recent years because they contribute to the complex character of the wine. The aim of this work was to investigate the fermentation products of ten indigenous strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes, belonging to Hypopichia pseudoburtonii, Metschnikowia pulcherrima, Metschnikowia sinensis, Metschnikowia chrysoperlae, Lachancea thermotolerans, Pichia kluyveri, Hanseniaspora uvarum, Hanseniaspora guillermondii, Hanseniaspora pseudoguillermondii, and Starmerella apicola species, and compare it with commercial non-Saccharomyces and Saccharomyces strains.

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

Management of grapevine water status with the DSS Vintel® provides evidence of sustainable irrigation strategies while maintaining wine quality of Pinot gris in Friuli-Venezia Giulia region, NE italy

Deficit irrigation strategies can be valuable means to improve grape quality while saving important amounts of water. A simple way to use deficit irrigation can be based on irrigating a vineyard with a determined level of crop evapotranspiration. Using a precise physiological parameter indicating water status, irrigation could be managed to maintain a specific pre-dawn leaf water potential.