terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Biotic interactions 9 The invasive seaweed Rugulopteryx okamurae: an innovative plant protective extract

The invasive seaweed Rugulopteryx okamurae: an innovative plant protective extract

Abstract

Grapevine downy mildew, caused by Plasmopara viticola, is a devastating disease worldwide. Most commercially important cultivars of the European grapevine are highly susceptible and therefore require the recurrent application of synthetic fungicides to control the disease, copper being the most frequently used. However, with European Union goals to lower their usage, there is a need to develop innovative and sustainable strategies. In this respect, seaweeds have proven to have great potential as phytosanitary agents, in addition to promoting plant growth and stress-tolerance.

A greenhouse experiment was conducted to determine the effectiveness of an extract of the invasive Rugulopteryx okamurae (RO) as resistance inducer and fungicide against P. viticola. The molecular and metabolic responses of two Tempranillo clones (VN40, RJ43), together with the changes on plant physiology and soil microbiota were investigated after seaweed applications and post-pathogen inoculation.

The extract preferentially induced Jasmonic acid (JA) related genes while inhibiting Salicylic acid (SA) responsive ones. In addition, in RO treated RJ43 plants SA pathway repression became stronger under P. viticola stress, and the antagonist relation between JA/SA pathways was corroborated. The later plants accumulated more piceid and had an increased activity of antioxidant enzymes. Moreover, RO slightly modified soil properties and soil fungal composition, the nematophagous biological control agent Harposporium being particularly high at seaweed treated RJ soils. Importantly, disease severity was reduced in RO treated plants indicating its ability to promote grapevine protection. All results suggest Ruguloperyx extract´s potential as palliative against P. viticola.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Iratxe Zarraonaindia1,2*, Asier Cámara1, Juan José Córdoba-Granados3, Usue Pérez-López4, Enrico Cretazzo3, Amaia Mena-Petite5, Maite Lacuesta5, Ana Diez6, Emma Cantos-Villar3

1 Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa (Bizkaia), Spain
2 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
3 Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) Rancho de la Merced, Consejería de Agricultura, Pesca, Agua y Desarrollo Rural, Junta de Andalucía, Cádiz, Spain
4 Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, (UPV/EHU), Leioa (Bizkaia), Spain
5 Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz (Araba), Spain
6 Neiker, Plant Protection and Production department, Campus Agroalimentario de Arkaute – E-01080 Vitoria-Gasteiz, Spain

Contact the author*

Keywords

Plasmopara viticola, Rugulopteryx okamurae, biostimulator, fungicide, microbiota

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Sur la réalité du lien entre le terroir et le produit : de l’analyse sémantique à l’approche écologique

The reflections presented here are a synthesis of a set of research on the construction of a scientific logic concerning the relations between the terroir, the vine, the wine, and on the study of a product, the wine, considered as the resulting from many interactions between factors of various orders. This work has benefited greatly from discussions of an epistemological as well as a technical nature with all the researchers at URVV (Angers) and with our colleagues at the Institut National des Appellations d’Origine, over several years.

MicrobiomeSupport: Towards coordinated microbiome R&I activities in the food system to support (EU and) international bioeconomy goals

Microbiomes have crucial roles in maintaining life on Earth, and their functions drive human, animal, plant and environmental health. The microbiome research landscape is developing rapidly and is performed in many different science fields using similar concepts but mostly one (eco)system at-a-time. Thus, we are only starting to unravel and understand the interconnectedness of microbiomes across the (eco)systems.

Innovation in pre- and post-harvest biocontrol: novel strategies against Botrytis cinerea for grape preservation

Driven by the demand for sustainable agriculture, biocontrol is emerging as a crucial alternative to chemical fungicides for crop protection.

Effects of oak barrel aging monitored by 1H-NMR metabolomics

The study of wine evolution during barrel aging is an important aspect of wine quality. Our previous works have shown that wine metabolome monitoring by

1H-NMR approaches allows determining the impact of different winemaking processes including traitements using enzymes or finning agents [1].

Les justifications “terroirs” en terme de marketing: les conditions sont réunies pour une rencontre de qualité entre le consommateur moderne et le vin

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...