terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Biotic interactions 9 The invasive seaweed Rugulopteryx okamurae: an innovative plant protective extract

The invasive seaweed Rugulopteryx okamurae: an innovative plant protective extract

Abstract

Grapevine downy mildew, caused by Plasmopara viticola, is a devastating disease worldwide. Most commercially important cultivars of the European grapevine are highly susceptible and therefore require the recurrent application of synthetic fungicides to control the disease, copper being the most frequently used. However, with European Union goals to lower their usage, there is a need to develop innovative and sustainable strategies. In this respect, seaweeds have proven to have great potential as phytosanitary agents, in addition to promoting plant growth and stress-tolerance.

A greenhouse experiment was conducted to determine the effectiveness of an extract of the invasive Rugulopteryx okamurae (RO) as resistance inducer and fungicide against P. viticola. The molecular and metabolic responses of two Tempranillo clones (VN40, RJ43), together with the changes on plant physiology and soil microbiota were investigated after seaweed applications and post-pathogen inoculation.

The extract preferentially induced Jasmonic acid (JA) related genes while inhibiting Salicylic acid (SA) responsive ones. In addition, in RO treated RJ43 plants SA pathway repression became stronger under P. viticola stress, and the antagonist relation between JA/SA pathways was corroborated. The later plants accumulated more piceid and had an increased activity of antioxidant enzymes. Moreover, RO slightly modified soil properties and soil fungal composition, the nematophagous biological control agent Harposporium being particularly high at seaweed treated RJ soils. Importantly, disease severity was reduced in RO treated plants indicating its ability to promote grapevine protection. All results suggest Ruguloperyx extract´s potential as palliative against P. viticola.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Iratxe Zarraonaindia1,2*, Asier Cámara1, Juan José Córdoba-Granados3, Usue Pérez-López4, Enrico Cretazzo3, Amaia Mena-Petite5, Maite Lacuesta5, Ana Diez6, Emma Cantos-Villar3

1 Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa (Bizkaia), Spain
2 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
3 Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) Rancho de la Merced, Consejería de Agricultura, Pesca, Agua y Desarrollo Rural, Junta de Andalucía, Cádiz, Spain
4 Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, (UPV/EHU), Leioa (Bizkaia), Spain
5 Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz (Araba), Spain
6 Neiker, Plant Protection and Production department, Campus Agroalimentario de Arkaute – E-01080 Vitoria-Gasteiz, Spain

Contact the author*

Keywords

Plasmopara viticola, Rugulopteryx okamurae, biostimulator, fungicide, microbiota

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Historical reconquest of hillslopes by the “Vins des Abymes” after the collapse of Mont Granier in 1248 (Savoie, France)

The vineyards extending between the hillslopes of ‘Apremont’ and ‘Les Marches’ that dominate the valley of Chambéry (Savoie, French Alps) define the terroir of the ‘Vins des Abymes’.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

Managing precision irrigation in vineyards: hydraulic and molecular signaling in eight grapevine varieties

Understanding the physiological and molecular bases of grapevine responses to mild to moderate water deficits is fundamental to optimize vineyard irrigation management and identify the most suitable varieties. In Mediterranean regions, the higher frequency of heat waves and droughts highlights the importance of precision irrigation to meet vine water demands and demonstrates the necessity for a deeper understanding of the different physiological responses among varieties under water stress. In this context, previous reports show an interplay between stomatal regulation of transpiration and changes in leaf hydraulic conductivity, also with the involvement of aquaporins (AQPs), particularly under water stress. However, how those signaling mechanisms are regulated in different grapevine varieties along phenological phases is unclear.

Mapping plant water status to indirectly assess variability in grape flavonoids and inform selective harvest decisions

Plant water stress affects grape (Vitis vinifera L.) berry composition and is variable in space due to variations in the physical environment at the growing site. Could we use water status maps as a sensitive tool to discriminate between harvest zones?

New breeding frontiers: application of the CRISPR-cas9 system in grapevine (V. vinifera L.) and improvements in plant regeneration

Nowadays, many policies are being adopted for direct agriculture towards more sustainable approaches. To continue to maintain a high production using fewer fertilizers, pesticides and water resources, agronomic techniques must be combined with biotechnological approaches. In grapevine, the breeding programs are restricted by the fact that it has a highly heterozygous genome, therefore, if on the one hand, we try to improve the characteristics, on the other hand it is necessary to preserve the original genome of the varieties. CRISPR-cas9 system is one of the smartest tools to carry out highly precise genetic modifications leaving the genetic background unchanged.