terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Biotic interactions 9 The invasive seaweed Rugulopteryx okamurae: an innovative plant protective extract

The invasive seaweed Rugulopteryx okamurae: an innovative plant protective extract

Abstract

Grapevine downy mildew, caused by Plasmopara viticola, is a devastating disease worldwide. Most commercially important cultivars of the European grapevine are highly susceptible and therefore require the recurrent application of synthetic fungicides to control the disease, copper being the most frequently used. However, with European Union goals to lower their usage, there is a need to develop innovative and sustainable strategies. In this respect, seaweeds have proven to have great potential as phytosanitary agents, in addition to promoting plant growth and stress-tolerance.

A greenhouse experiment was conducted to determine the effectiveness of an extract of the invasive Rugulopteryx okamurae (RO) as resistance inducer and fungicide against P. viticola. The molecular and metabolic responses of two Tempranillo clones (VN40, RJ43), together with the changes on plant physiology and soil microbiota were investigated after seaweed applications and post-pathogen inoculation.

The extract preferentially induced Jasmonic acid (JA) related genes while inhibiting Salicylic acid (SA) responsive ones. In addition, in RO treated RJ43 plants SA pathway repression became stronger under P. viticola stress, and the antagonist relation between JA/SA pathways was corroborated. The later plants accumulated more piceid and had an increased activity of antioxidant enzymes. Moreover, RO slightly modified soil properties and soil fungal composition, the nematophagous biological control agent Harposporium being particularly high at seaweed treated RJ soils. Importantly, disease severity was reduced in RO treated plants indicating its ability to promote grapevine protection. All results suggest Ruguloperyx extract´s potential as palliative against P. viticola.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Iratxe Zarraonaindia1,2*, Asier Cámara1, Juan José Córdoba-Granados3, Usue Pérez-López4, Enrico Cretazzo3, Amaia Mena-Petite5, Maite Lacuesta5, Ana Diez6, Emma Cantos-Villar3

1 Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa (Bizkaia), Spain
2 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
3 Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) Rancho de la Merced, Consejería de Agricultura, Pesca, Agua y Desarrollo Rural, Junta de Andalucía, Cádiz, Spain
4 Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, (UPV/EHU), Leioa (Bizkaia), Spain
5 Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz (Araba), Spain
6 Neiker, Plant Protection and Production department, Campus Agroalimentario de Arkaute – E-01080 Vitoria-Gasteiz, Spain

Contact the author*

Keywords

Plasmopara viticola, Rugulopteryx okamurae, biostimulator, fungicide, microbiota

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

HPLC and SEC analysis on the flavonoids and the skin cell wall material of Merlot berries reveals new insights into the study of the phenolic maturity

Anthocyanins and tannins contribute to important sensorial traits of red wines, such as color and mouthfeel attributes.

The chain of effects between sunburn necroses and rot infestation in the context of climate change

Climate change will increasingly challenge future viticulture due to long-enduring and extreme weather conditions, jeopardizing yield and wine quality in various ways.

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.

Simulating the impact of climate change on grapevine behaviour and viticultural activities

Global climate change affects regional climates and hold implications for wine growing regions worldwide