terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterization of berry softening and sugar accumulation dynamics in a slow-ripening genotype and its response to abscisic acid treatments

Characterization of berry softening and sugar accumulation dynamics in a slow-ripening genotype and its response to abscisic acid treatments

Abstract

In the current viticultural context, global warming leads to advanced and possibly accelerated ripening which can alter the balance among desirable grape quality traits sought for winemaking. Evaluation of genetic material that displays delayed and/or slower ripening could uncover a potential “slow ripening” trait for incorporation into commercial varieties through breeding. In this study, we evaluated a white-fruited selection discovered in the Grape Breeding and Genetics program at E. & J. Gallo Winery that displayed an unusual ripening pattern compared to standard varieties. Vines of the slow-ripening selection did not differ in their visual appearance, water status or gas exchange characteristics compared to vines of its normal-ripening sibling. Sugar accumulation, berry growth and berry firmness were monitored weekly during ripening for two consecutive years to characterize differences in fruit maturation rate between the selections. Compared to the normal-ripening selection, the slow-ripening selection exhibited a 30-day delay in the onset of ripening and required longer to complete veraison, resulting in an extended lag phase. This was confirmed by berry firmness measurements, which revealed that berry softening was delayed and occurred at a reduced rate in the slow ripening selection. Exogenous abscisic acid treatments partially restored normal rates of ripening, but timing and dosage effects were observed. In this attempt to explore the slow ripening trait of grapes we discovered a possible imbalance in the hormone pool thought responsible for the onset of ripening. Further investigations are required to fully characterize and quantify this trait.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Pietro Previtali1*, Kenneth Shackel2, Peter Cousins1, Nick Dokoozlian1

1 Winegrowing Research, E. & J. Gallo Winery, Modesto, 95354 CA
2 Department of Plant Sciences, University of California Davis, Davis, 95616 CA

Contact the author*

Keywords

berry softening, climate change, slow ripening, sugar accumulation, veraison

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

PIWIs’ variation in drought response under semi-controlled conditions 

Grapevine interspecific hybrids (PIWIs, from German “pilzwiderstandsfähige Rebsorten” meaning fungus tolerant grapevine cultivars), offer a promising alternative to traditional cultivars in many wine regions due to their tolerance to certain fungal diseases. This makes them a potential solution for sustainable wine production, particularly under organic systems. Despite extensive research on certain agronomic traits and susceptibility to biotic diseases, such as powdery and downy mildews, the response of these cultivars to abiotic stressors, such as drought, remains unclear. Our study aims to investigate the eco-physiological traits of two commercial PIWI cultivars, Muscaris and Souvignier gris, at the leaf level to evaluate their response to drought stress.

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.

Transcriptomic and metabolomic responses to wounding and grafting in grapevine

Grafting plants uses intrinsic healing processes to join two different plants together to create one functional organism. To further our understanding of the molecular changes occurring during graft union formation in grapevine, we characterized the metabolome and transcriptome of intact and wounded cuttings (with and without buds to represent scions and rootstocks respectively), and homo- and heterografts at 0 and 14 days after wounding/grafting. As over-wintering, dormant plant material was grafted, we also characterized the gene expression changes in the wood during bud burst and spring activation of growth. We observed an asymmetrical pattern of gene expression between above and below the graft interface, auxin and sugar related genes were up-regulated above the graft interface, while genes involved in stress responses were up-regulated below the graft interface.

Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Copper and iron are known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. However, the binding of metal ions to different wine components under wine conditions, and the impact of this binding on the ability of the metal ions to induce spoilage processes, is not well understood. This study surveyed a range of red and white wines for an understanding of the variability of broad metal categories within the wines. The techniques utilized included an electrochemical constant current stripping potentiometry technique (ccSP), and solid phase extraction (SPE) fractionation of wine with subsequent analysis of the metal content of each fraction by inductively coupled plasma – optical emission spectroscopy (ICP-OES).

Adapting Portuguese vineyards to climate change: impact of different irrigation regimes on phenolic composition

Climate change has led to increased extreme weather events, such as severe droughts and intense rainfall, with regions like Alentejo and Algarve in Portugal, being particularly affected.