terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterization of berry softening and sugar accumulation dynamics in a slow-ripening genotype and its response to abscisic acid treatments

Characterization of berry softening and sugar accumulation dynamics in a slow-ripening genotype and its response to abscisic acid treatments

Abstract

In the current viticultural context, global warming leads to advanced and possibly accelerated ripening which can alter the balance among desirable grape quality traits sought for winemaking. Evaluation of genetic material that displays delayed and/or slower ripening could uncover a potential “slow ripening” trait for incorporation into commercial varieties through breeding. In this study, we evaluated a white-fruited selection discovered in the Grape Breeding and Genetics program at E. & J. Gallo Winery that displayed an unusual ripening pattern compared to standard varieties. Vines of the slow-ripening selection did not differ in their visual appearance, water status or gas exchange characteristics compared to vines of its normal-ripening sibling. Sugar accumulation, berry growth and berry firmness were monitored weekly during ripening for two consecutive years to characterize differences in fruit maturation rate between the selections. Compared to the normal-ripening selection, the slow-ripening selection exhibited a 30-day delay in the onset of ripening and required longer to complete veraison, resulting in an extended lag phase. This was confirmed by berry firmness measurements, which revealed that berry softening was delayed and occurred at a reduced rate in the slow ripening selection. Exogenous abscisic acid treatments partially restored normal rates of ripening, but timing and dosage effects were observed. In this attempt to explore the slow ripening trait of grapes we discovered a possible imbalance in the hormone pool thought responsible for the onset of ripening. Further investigations are required to fully characterize and quantify this trait.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Pietro Previtali1*, Kenneth Shackel2, Peter Cousins1, Nick Dokoozlian1

1 Winegrowing Research, E. & J. Gallo Winery, Modesto, 95354 CA
2 Department of Plant Sciences, University of California Davis, Davis, 95616 CA

Contact the author*

Keywords

berry softening, climate change, slow ripening, sugar accumulation, veraison

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Exploring changes in browning kinetics, color, and antioxidants due to dealcoholization of wine

The global consumer demand for low or non-alcoholic wine is growing steadily in recent years, driven by health concerns, religious beliefs, and personal taste preferences etc.. Consequently, the removal of alcohol from wine can significantly alter its chemical and sensory properties, including color, aroma, and taste, which make a significant challenge for consumer to accept these products. Ethanol plays a crucial role in various chemical reactions and interactions that contribute to the development of wine’s characteristics.

Contribution of soil for tipifiyng wines in four geographical indications at Serra Gaúcha, Brazil

Brazil has a recent history on geographical indications and product regulation for high quality wines. The first geographic indication implemented was the Vale dos Vinhedos Indication of Procedence (

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Sensitivity of vis‐nir spectral indices to detect nitrogen deficiency and canopy function in cv. Barbera (Vitis vinifera L.) Grapevines

Precision nutrient management in viticulture can be addressed on the basis of a spatial characterization of within‐vineyard vine

Methodology for soil study and zoning

La caractérisation des sols en vue d’une étude de terroirs viticoles peut être réalisée à différents niveaux de complexité, suivant le nombre de variables pris en compte et suivant le fait que celles-ci sont spatialisées ou non