terclim by ICS banner
IVES 9 IVES Conference Series 9 Transcriptomic and metabolomic responses to wounding and grafting in grapevine

Transcriptomic and metabolomic responses to wounding and grafting in grapevine

Abstract

Grafting plants uses intrinsic healing processes to join two different plants together to create one functional organism. To further our understanding of the molecular changes occurring during graft union formation in grapevine, we characterized the metabolome and transcriptome of intact and wounded cuttings (with and without buds to represent scions and rootstocks respectively), and homo- and heterografts at 0 and 14 days after wounding/grafting. As over-wintering, dormant plant material was grafted, we also characterized the gene expression changes in the wood during bud burst and spring activation of growth. We observed an asymmetrical pattern of gene expression between above and below the graft interface, auxin and sugar related genes were up-regulated above the graft interface, while genes involved in stress responses were up-regulated below the graft interface. Many genes were differentially expressed between wounded cuttings and homografts, and between the different scion/rootstock combinations. By combining MapMan and gene ontology analysis, we identified several genes families potentially involved in grafting. Our results were consistent with previous work on other plant species, but we were able to identify some specificities linked to grafting in grapevine. By comparing the scion of homo- and hetero-grafts, we also show that grafting with a non-self-rootstock can influence scion gene expression 14 days after grafting. The combination of metabolomics and transcriptomics shows that the changes in gene expression were accompanied by corresponding changes in tissue metabolite concentrations.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Sarah Jane Cookson1*, Grégoire Loupit1#, Virginie Garcia1, Joseph Tran1, Céline Franc3, Gilles De Revel3, Josep Valls Fonayet2,3, Nathalie Ollat1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
2 Bordeaux Metabolome Facility, MetaboHUB, PHENOMEEMPHASIS, 33140 Villenave dOrnon, France
3 Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon France

#current address:Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, CNRS, Université Lyon 1, France

Contact the author*

Keywords

scion, rootstock, grafting, callus, transcriptome, metabolite analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence of Partial Rootzone Drying on grape and wine anthocyanin composition

The effect of Partial Rootzone Drying (PRD) on fruit and wine composition has been investigated. At harvest, total anthocyanin and phenolic concentration of Shiraz and Cabernet Sauvignon fruit was either unaltered or increased by PRD relative to control irrigation over two seasons. Where there was an increase in anthocyanin concentration

A generic method to analyze vine water deficit continuously

In the context of global warming, water scarcity is becoming an increasing issue worldwide. However, the reference method to characterize vine water deficit is based on water potential measurement, which is a destructive and discontinuous method. The current climatic context emphasizes the need for more precise and more continuous vineyard water use measurements in order to optimize irrigation and vine water deficit monitoring.

Cross analytical and sensory differentiation of monovarietal white wines from four autochthonous grape varieties: focus on macromolecules

White wines contain macromolecules such as proteins, phenolic compounds and polysaccharides. On a sensory
level, these compounds contribute to the ‘mouthfeel’ that differentiates the white wines worldwide [1].

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.