terclim by ICS banner
IVES 9 IVES Conference Series 9 Transcriptomic and metabolomic responses to wounding and grafting in grapevine

Transcriptomic and metabolomic responses to wounding and grafting in grapevine

Abstract

Grafting plants uses intrinsic healing processes to join two different plants together to create one functional organism. To further our understanding of the molecular changes occurring during graft union formation in grapevine, we characterized the metabolome and transcriptome of intact and wounded cuttings (with and without buds to represent scions and rootstocks respectively), and homo- and heterografts at 0 and 14 days after wounding/grafting. As over-wintering, dormant plant material was grafted, we also characterized the gene expression changes in the wood during bud burst and spring activation of growth. We observed an asymmetrical pattern of gene expression between above and below the graft interface, auxin and sugar related genes were up-regulated above the graft interface, while genes involved in stress responses were up-regulated below the graft interface. Many genes were differentially expressed between wounded cuttings and homografts, and between the different scion/rootstock combinations. By combining MapMan and gene ontology analysis, we identified several genes families potentially involved in grafting. Our results were consistent with previous work on other plant species, but we were able to identify some specificities linked to grafting in grapevine. By comparing the scion of homo- and hetero-grafts, we also show that grafting with a non-self-rootstock can influence scion gene expression 14 days after grafting. The combination of metabolomics and transcriptomics shows that the changes in gene expression were accompanied by corresponding changes in tissue metabolite concentrations.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Sarah Jane Cookson1*, Grégoire Loupit1#, Virginie Garcia1, Joseph Tran1, Céline Franc3, Gilles De Revel3, Josep Valls Fonayet2,3, Nathalie Ollat1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
2 Bordeaux Metabolome Facility, MetaboHUB, PHENOMEEMPHASIS, 33140 Villenave dOrnon, France
3 Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon France

#current address:Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, CNRS, Université Lyon 1, France

Contact the author*

Keywords

scion, rootstock, grafting, callus, transcriptome, metabolite analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Data deluge: Opportunities, challenges, and lessons of big data in a multidisciplinary project

Grapevine powdery mildew resistance is a key target for grape breeders and grape growers worldwide. The driver of the USDA-NIFA-SCRI VitisGen3 project is completing the pipeline from germplasm identification to QTL to candidate gene characterization to new cultivars to vineyards to consumers. This is a common thread across such projects internationally. We will discuss how our objectives and approaches leverage big data to advance this initiative, starting with genomics and computer vision phenotyping for gene discovery and genetic improvement. To manage and maintain resistances for long-term sustainability, growers will be trained through our nation-wide extension and outreach plan.

Identification of compounds produced by reactions of flavonoids and acetaldehyde in wine

During aging, wine consumes small amounts of oxygen. This oxygen intake triggers a series of reactions that lead to flavonoid elongation, which is known to reduce bitterness and astringency while enhancing color stability.

The vineyard of the future: producing more with less  

similar to other agricultural producers, grape growers face increasing pressure to improve productivity and production efficiency while reducing their environmental impact. Threats due to extreme climate events, as well as the uncertainty of available water and labor, provide significant challenges to the future of grape production. This presentation will provide an integrated overview of the tools and technologies being developed to address these issues and to help growers manage vineyards in the future, including vineyard design, remote and proximal sensing, automation, data management and decision support systems, and germplsm improvement. The potential impact of these advancements on vineyard productivity, fruit quality, and sustainability will be discussed.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Impact of environmental conditions in vscs production during wine fermentation by Saccharomyces cerevisiae

The aroma of wine is one of the most important determinants of quality as it strongly influences the consumer’s acceptance or rejection. Among the thousands of molecules comprising the wine aroma, sulfur-containing compounds can be considered as a “double-edged sword”: some of them, deriving from varietal precursors provide fruity pleasant aromas, while other ones, produced by yeast metabolism are related to “unpleasant” aromas