terclim by ICS banner
IVES 9 IVES Conference Series 9 Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Abstract

Deciphering grapevine dormancy is crucial in the current context of climatic challenges: advancing budburst phenology and increased late frost probabilities, observed in the last decades and expected to further increase, require deeper understanding. Beyond higher mean temperatures, abiotic stresses such as water deficit have also been emphasized as actors. In this framework, we aimed at exploring new methodologies for tracking dormancy cycle and testing the interplay on its regulation of temperature dynamics and drought.
In a first experiment, twenty-one Vitis vinifera varieties were monitored during ecodormancy and budburst over three years. The dataset, consisting of BBCH scale values, growing degree days (GDD) accumulation, and quantum yield of dark-adapted photosystem II (Fv/Fm) of bud sections, allowed us to identify non-linear associations of Fv/Fm ratio with early phenology and GDD6. Therefore, we propose it as a quantitative and reliable tool for further analyses.
In a second experiment, Chardonnay plants underwent water deficit stress or full-field capacity irrigation throughout the season. In addition to the methods described above, by sampling nodes at different timepoints during dormancy and exposing them to budbreak-forcing conditions, we tracked dormancy phases and their relationship with water deficit stress, acclimation and deacclimation dynamics.
Annual climate and dormancy cycle exhibit profound interdependence: oscillating temperature trends and stresses combinations lead grapevines to a plastic and varietal-specific response, possibly influenced by these same factors in several previous years.
The above findings and their underlying physiological mechanisms will be presented and discussed.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Alessandro Bignardi1*, Massimo Bertamini1, Michele Faralli1

1 Center Agriculture Food Environment (C3A), University of Trento, Via Mach 1, San Michele all’Adige, 38010 Trento, Italy

Contact the author*

Keywords

Grapevine, dormancy, late frost risk, drought, chlorophyll fluorescence

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Is it possible to approximate the technological and phenolic maturity of grapes by foliar application of elicitors?

The increase in the temperature and the more severe water stress conditions, trends observed in recent years as a consequence of climate change, are leading a mismatch between the technological and phenolic maturity of grapes

Wine ageing: Managing wood contact time.

Barrel ageing is a transformative process that alters a wine’s organoleptic properties and consequently its price. Even though it is considered beneficial mostly for red wines, ageing can also be used for white wines but for shorter time periods. Due to barrel costs, space requirements and the markets’ demands for fast release of each new vintage, new products such as oak chips or shavings have been developed to help minimize the time needed for the extraction of essential wood compounds.

Studying PIWIs in three dimensions: agronomic, economic and ecological evaluation of 14 fungus-tolerant cultivars in Luxembourg

Growing fungus-tolerant cultivars (PIWIs) reduces the need of fungicide use by 50-80 %. PIWIs have the potential to address climate change adaptation and mitigation simultaneously.

Metabolomic study of mixed Saccharomyces cerevisiae yeast during fermentation

Alcoholic fermentation conducted by microorganism is a key step in the production of wine. In this process, interactions between different species of yeast are widely described but their mechanisms are still poorly understood. The interactions studied in wine are mainly between Saccharomyces and non-Saccharomyces species. Therefore, little is known about the mechanisms of interactions

Impact of chitosan treatment on the physico-chemical features of a sangiovese red wine

Chitosan is gaining interest in red winemaking thanks to its ability to inhibit the development of Brettanomyces spp. yeast, or other undesired wine microbial threats. However, little is known about potential side-effects of its addition on the physico-chemical parameters of red wines.