terclim by ICS banner
IVES 9 IVES Conference Series 9 Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Abstract

Deciphering grapevine dormancy is crucial in the current context of climatic challenges: advancing budburst phenology and increased late frost probabilities, observed in the last decades and expected to further increase, require deeper understanding. Beyond higher mean temperatures, abiotic stresses such as water deficit have also been emphasized as actors. In this framework, we aimed at exploring new methodologies for tracking dormancy cycle and testing the interplay on its regulation of temperature dynamics and drought.
In a first experiment, twenty-one Vitis vinifera varieties were monitored during ecodormancy and budburst over three years. The dataset, consisting of BBCH scale values, growing degree days (GDD) accumulation, and quantum yield of dark-adapted photosystem II (Fv/Fm) of bud sections, allowed us to identify non-linear associations of Fv/Fm ratio with early phenology and GDD6. Therefore, we propose it as a quantitative and reliable tool for further analyses.
In a second experiment, Chardonnay plants underwent water deficit stress or full-field capacity irrigation throughout the season. In addition to the methods described above, by sampling nodes at different timepoints during dormancy and exposing them to budbreak-forcing conditions, we tracked dormancy phases and their relationship with water deficit stress, acclimation and deacclimation dynamics.
Annual climate and dormancy cycle exhibit profound interdependence: oscillating temperature trends and stresses combinations lead grapevines to a plastic and varietal-specific response, possibly influenced by these same factors in several previous years.
The above findings and their underlying physiological mechanisms will be presented and discussed.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Alessandro Bignardi1*, Massimo Bertamini1, Michele Faralli1

1 Center Agriculture Food Environment (C3A), University of Trento, Via Mach 1, San Michele all’Adige, 38010 Trento, Italy

Contact the author*

Keywords

Grapevine, dormancy, late frost risk, drought, chlorophyll fluorescence

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Analysis of the daily minimum temperatures variability in the Casablanca Valley, Chile

The Casablanca Valley (CV) has a complex topography and is located near the Pacific Ocean. These factors generate important climatic differences in relation to other wine producing zones of Central Chile.

Evaluating analytical methods for quantification of glutathione in grape juice and wine

AIM: Glutathione (GSH) is a powerful natural antioxidant, considered as a promising molecule against oxidative damage of aroma during winemaking and storage.

Storia del prosecco e del suo territorio di produzione: un percorso di studi in continuo progresso

Nella realtà viticola Italiana il Prosecco è uno degli esempi più evidenti di un percorso storico che ha saputo valorizzare lo stretto legame tra vitigno e territorio d’origine.

Unique resistance traits against downy mildew from the domestication center of grapevine

The Eurasian grapevine (Vitis vinifera), an Old World species now cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola.

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules