terclim by ICS banner
IVES 9 IVES Conference Series 9 Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Abstract

Deciphering grapevine dormancy is crucial in the current context of climatic challenges: advancing budburst phenology and increased late frost probabilities, observed in the last decades and expected to further increase, require deeper understanding. Beyond higher mean temperatures, abiotic stresses such as water deficit have also been emphasized as actors. In this framework, we aimed at exploring new methodologies for tracking dormancy cycle and testing the interplay on its regulation of temperature dynamics and drought.
In a first experiment, twenty-one Vitis vinifera varieties were monitored during ecodormancy and budburst over three years. The dataset, consisting of BBCH scale values, growing degree days (GDD) accumulation, and quantum yield of dark-adapted photosystem II (Fv/Fm) of bud sections, allowed us to identify non-linear associations of Fv/Fm ratio with early phenology and GDD6. Therefore, we propose it as a quantitative and reliable tool for further analyses.
In a second experiment, Chardonnay plants underwent water deficit stress or full-field capacity irrigation throughout the season. In addition to the methods described above, by sampling nodes at different timepoints during dormancy and exposing them to budbreak-forcing conditions, we tracked dormancy phases and their relationship with water deficit stress, acclimation and deacclimation dynamics.
Annual climate and dormancy cycle exhibit profound interdependence: oscillating temperature trends and stresses combinations lead grapevines to a plastic and varietal-specific response, possibly influenced by these same factors in several previous years.
The above findings and their underlying physiological mechanisms will be presented and discussed.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Alessandro Bignardi1*, Massimo Bertamini1, Michele Faralli1

1 Center Agriculture Food Environment (C3A), University of Trento, Via Mach 1, San Michele all’Adige, 38010 Trento, Italy

Contact the author*

Keywords

Grapevine, dormancy, late frost risk, drought, chlorophyll fluorescence

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers.

Advancing wine authentication: non-invasive near-infrared spectroscopy and machine learning for vintage and quality traits assessment

Wine fraud, encompassing counterfeiting and adulteration, poses a significant threat to the wine industry, resulting in annual losses totalling billions of dollars.

Anticipating consumer preference for low-alcohol wine: a machine learning analysis based on consumption habits and socio-demographics

The global wine consumption landscape is undergoing a transformation, marked by a growing trend towards reduced consumption and a preference for healthier lifestyles. In line with this shift, european union regulation (regulation eu 2021/2117) has recently redefined dealcoholized or partially dealcoholized wine within the wine category.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

A fine scale study of temperature variability in the Saint-Emilion area (Bordeaux, France)

As the quality and typicity of wine are influenced by the climate, it is essential to have a good knowledge of climate variability, especially with regard to temperature, which has a great impact on vine behavior and grape ripening.