terclim by ICS banner
IVES 9 IVES Conference Series 9 Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Abstract

Deciphering grapevine dormancy is crucial in the current context of climatic challenges: advancing budburst phenology and increased late frost probabilities, observed in the last decades and expected to further increase, require deeper understanding. Beyond higher mean temperatures, abiotic stresses such as water deficit have also been emphasized as actors. In this framework, we aimed at exploring new methodologies for tracking dormancy cycle and testing the interplay on its regulation of temperature dynamics and drought.
In a first experiment, twenty-one Vitis vinifera varieties were monitored during ecodormancy and budburst over three years. The dataset, consisting of BBCH scale values, growing degree days (GDD) accumulation, and quantum yield of dark-adapted photosystem II (Fv/Fm) of bud sections, allowed us to identify non-linear associations of Fv/Fm ratio with early phenology and GDD6. Therefore, we propose it as a quantitative and reliable tool for further analyses.
In a second experiment, Chardonnay plants underwent water deficit stress or full-field capacity irrigation throughout the season. In addition to the methods described above, by sampling nodes at different timepoints during dormancy and exposing them to budbreak-forcing conditions, we tracked dormancy phases and their relationship with water deficit stress, acclimation and deacclimation dynamics.
Annual climate and dormancy cycle exhibit profound interdependence: oscillating temperature trends and stresses combinations lead grapevines to a plastic and varietal-specific response, possibly influenced by these same factors in several previous years.
The above findings and their underlying physiological mechanisms will be presented and discussed.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Alessandro Bignardi1*, Massimo Bertamini1, Michele Faralli1

1 Center Agriculture Food Environment (C3A), University of Trento, Via Mach 1, San Michele all’Adige, 38010 Trento, Italy

Contact the author*

Keywords

Grapevine, dormancy, late frost risk, drought, chlorophyll fluorescence

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Heat waves and drought stress impact grapevine growth and physiology

Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world.

Factors affecting flavonols instability of red wines due to climate change

Due to varietal factors, the formation of undesirable deposits of flavonols, especially quercetin (Q), occurs in several red wines.

Impact of geographical location on the phenolic profile of minority varieties grown in Spain. II: red grapevines

Because terroir and cultivar are drivers of wine quality, is essential to investigate theirs effects on polyphenolic profile before promoting the implantation of a red minority variety in a specific area. This work, included in MINORVIN project, focuses in the polyphenolic profile of 7 red grapevines minority varieties of Vitis vinifera L. (Morate, Sanguina, Santafe, Terriza Tinta Jeromo Tortozona Tinta) and Tempranillo) from six typical viticulture Spanish areas: Aragón (A1), Cataluña (A2), Castilla la Mancha (A3), Castilla –León (A4), Madrid (A5) and Navarra (A6) of 2020 season. Polyphenolic substances were extracted from grapes. 35 compounds were identified and quantified (mg subtance/kg fresh berry) by HPLC and grouped in anthocyanins (ANT) flavanols (FLAVA), flavonols (FLAVO), hydroxycinnamic (AH), benzoic (BA) acids and stilbenes (ST). Antioxidant activity (AA, mmol TE /g fresh berry) was determined by DPPH method. The results were submitted to a two-way ANOVA to investigate the influence of variety, area and their interaction for each polyphenolic family and cluster analysis was used to construct hierarchical dendrograms, searching the natural groupings among the samples. Sanguina (A3) had the most of total polyphenols while Tempranillo (A5) those of ANT. Sanguina (A2) and (A3) reached the highest values of FLAVO, FLAVA and AA. These two last samples had also the maximum of AA. The effect cultivar and area were significant for all polyphenolic families analyzed. A high variability due to variety (>50%) was observed in FLAVA and the maximum value of variability due to growing area was detected in AA (86.41%), ANT and FLAVO (51%); the interaction variety*zone was significant only for ANT, FLAVO, EST and AA. Finally, dendrograms presented five cluster: i) Sanguina (A2); ii) Sanguina (A3); iii) Tempranillo (A5); iv) Tempranillo (A3); Terriza (A3,A5), Morate (A5,A6); v) Santafé (A1,A6); Tortozona tinta (A1,A3,A6); Tinta Jeromo (A3,A4).

Energy optimization of the Charmat-Martinotti refermentation process

The european union has estimated that energy consumption for wine production is about 1,750 million kwh per year, of which 500 million kwh is attributable to italy. In recent years, Italy has emerged as the world’s leading wine producer with about 50 million hectoliters per year. About 20 percent (9.8 million hectoliters) of Italian wine is marketed after refermentation according to the Charmat-Martinotti method.

Phylloxera root infection drives vineyard water

Most of the rootstocks used in viticulture today are partly resistant against grape phylloxera (Daktulosphaira vitifoliae Fitch) and host phylloxera on the root system without conspicuous negative impacts on fruit production).