terclim by ICS banner
IVES 9 IVES Conference Series 9 Nutrient absorption in vines (Vitis vinifera L., cv. Tempranillo blanco) under two water management approaches in a semiarid region of the north of Spain

Nutrient absorption in vines (Vitis vinifera L., cv. Tempranillo blanco) under two water management approaches in a semiarid region of the north of Spain

Abstract

Two treatments were studied in vines of cv. Tempranillo blanco (Vitis vinifera L.) during the 2012-2018 period in an experimental plot located in Rincón de Soto (La Rioja, Spain). Rainfed treatment (R0) was compared with respect to an irrigation treatment (R2) equivalent to 30% of the crop evapotranspiration (ET0) from fruitset to harvest phenological stages. Pre-veraison irrigation ranged from 43 (2014) to 66 mm/m2 (2018) while post-veraison irrigation ranged from 37 (2017) to 115 mm/m2 (2012).The normalized difference vegetation index (NDVI) was assessed by measures of reflectance, nutrients were determined by analysis of petioles sampled at veraison, grape production was determined at harvest as well as renewable wood weight was assessed at pruning time.

NDVI results showed a higher biomass development for R2 which in general agreed with higher R2 production at harvest as well as a trend to a higher renewable wood weight at pruning time. Due to it, nutrient content in petioles showed, in general, the higher limitation in R2 with respect to Mg uptake and, in a lesser extent, K uptake, which were also reflected in the Ca/Mg and Mg/K ratios in petiole. Furthermore, the higher Ca and P concentrations in petiole observed for R2 throughout the season suggests their sufficiency and higher availability in R2 soils with respect to the dryer conditions of R0 soils. Finally, the higher Carbon concentration in petiole of R0 also showed the higher limitation of R0 for nutrient availability and later uptake with respect to R2.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Ignacio Martín1*, Luis Rivacoba1, Alicia Pou1, Diego López, Sergio Ibáñez1, Javier Portu1, Elisa Baroja1, Juana Martínez1, Natalia Domínguez, Enrique García-Escudero1

1 Instituto de Ciencias de la Vid y del Vino (ICVV). Finca La Grajera, Ctra. De Burgos km. 6 (LO-20-salida 13), 26007, Logroño (La Rioja), SPAIN

Contact the author*

Keywords

water stress, limited irrigation, nutrient uptake, reflectance, nutrient availability

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Impact of enological enzymes on aroma profile of Prosecco wines during second fermentation and sur lie aging

Proseccco is a famous italian Protected Designation of Origin (PDO) produced in two regions: Veneto e Friuli Venezia Giulia, however, the production is mainly concentrated in the province of Treviso. These territories are characterized by plains with some hilly areas and temperate climate. Its Production regulation provides a minimum utilization of 85% of Glera grapes, a local white grape variety, and up to a maximum of 15% of other local and international varieties. Prosecco second fermentation takes place, according to the Charmat method, in autoclaves.

Evolution of the crown procyanidins during wine making and aging in bottle

Condensed tannins are widely distributed in plant‐derived foods and beverages like grape, red wine, nuts, tea, apples and chocolate in which they contribute to multiple sensorial properties such as flavor, color, and taste (astringency and bitterness). During the wine making process,

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

Impact of the pre-fermentative addition of enological adjuvants on the development of UTA in wines

During alcoholic fermentation and wine aging, indole-3-acetic acid (IAA) can degrade into 2-aminoacetophenone (AAP). The presence of reasonable amount of AAP in wines is regarded as the main cause of untypical ageing

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].