terclim by ICS banner
IVES 9 IVES Conference Series 9 Does foliar fertilization with Seaweed improve the productivity and quality of ‘Merlot’ grape must?

Does foliar fertilization with Seaweed improve the productivity and quality of ‘Merlot’ grape must?

Abstract

Developing technologies that help vines survive and produce in quantity and quality within current times is mandatory. In this sense, in the 2021/2022 agricultural harvest, the influence of the foliar application of seaweed – Laminaria japonica was studied, aiming at productivity and quality of the must in the ‘Merlot’ grape. In the city of “Santana do Livramento”, “Rio Grande do Sul” (RS), Brazil; in a 15-year-old commercial vineyard of ‘Merlot’ clone ENTAV-INRA® 347, grafted onto ‘SO4’ rootstock, the following treatments were applied on 6 occasions: No treatment (control) and; Foliar application of Laminaria japonica seaweed (commercial product: Exal (ALAS), 2 kg ha-1) The treatments consisted of 4 replications (interval) and each interval had 4 plants. The response variables evaluated at harvest time were: productivity (t ha-1). Using the WineScanTM SO2 equipment (FOSS®, Denmark) the must was evaluated: density [g (cm3)-1], sugars (g L-1), pH, tartaric acid (g L-1), malic acid (g L-1), gluconic acid (g L-1), ammonia content (mg L-1), potassium content (mg L-1), total acidity (g L-1 in tartaric acid). The treatment with foliar application of seaweed stood out in productivity (11.3 t ha-1) when compared to the control treatment (9.8 t ha-1). In the must, the potassium content showed significant differences between the treatments, with a reduced level being obtained with the foliar application of seaweed. It is preliminarily concluded that the application of foliar fertilizer based on seaweed (Laminaria japonica) increased the productivity of ‘Merlot’ vines and reduced the potassium content in the must.

Acknowledgements: To the Company “Algas” América Latina Agricultura Sustentável (ALAS), in the names of its managing partners, Luis Augusto Bennemann de Souza and Fernando Carbonari Collares, for the donation of organic fertilizer composed of Marine Algae (Exal), and for the contribution with some inputs to the execution of this research.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Juan Saavedra del Aguila1*, Isabel Cristina Robaina Figueira Freitas1, Jansen Moreira Silveira1, Joana Darque Ribeiro Ozório1, Etiane Skrebsky Quadros1, Fabrício Domingues2, Lília Sichmann Heiffig-del Aguila3

1 Federal University of Pampa (UNIPAMPA)/Campus Dom Pedrito, Bachelor’s Degree in Enology
2 Consultant in Winegrowing and Agribusiness Management
3 Embrapa Temperate Climate

Contact the author*

Keywords

Vitis vinifera, sustainability, organic fertilizer, organic production, climate change

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Understanding vine response to Mediterranean summer stress for the development of adaptation strategies – in the kaolin case

In this video recording of the IVES science meeting 2023, Sara Bernardo (CITAB, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal) speaks about understanding vine response to Mediterranean summer stress for the development of adaptation strategies – in the kaolin case. This presentation is based on an original article accessible for free on OENO One.

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).

Toward an automatic way to identify red blotch infected vines from hyperspectral images acquired in the field

Vineyards are affected by different virus diseases, which can lower yield and affect the quality of grapes. Grapevine red blotch disease is one of them, and no curative solution exists. Once infected, a vine must be removed and replaced with a virus-free vine (aka roguing). Screening vineyards to look for symptoms can be time-consuming and needs well-trained experts. To improve this process, we conducted an experiment identifying infected vines using a hyperspectral camera in the field.

Managing nitrogen balance in cover-cropped vineyard

In this audio recording of the IVES science meeting 2022, Thibaut Verdenal (Agroscope, Pully, Switzerland) speaks about managing nitrogen balance in cover-cropped vineyard. This presentation is based on an original article accessible for free on OENO One.

Cover crops under-vine impact on grapevine performance and vineyard soil microorganisms is highly affected by edaphoclimatic conditions at a regional scale 

Soil management through cover crops can influence the cycle of nutrients, promote water infiltration, decrease erosion, and enhance the soil microbiota biodiversity, improving the grapevine performance. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in semi-arid climates. Use of covers under-vine might be an alternative to these practices aiming at grapevine quality and soil health improvement. The aim of this research was to study the implications of soil management under the vines (cultivation and cover crops) on growth, yield, berry composition and soil microbial communities. A cover crop composed by a mixture of legumes was sown and compared with a control (cultivation), which includes frequent tillage to keep the soil bare, in three areas characterized by different edaphoclimatic conditions in the region of Navarra.