terclim by ICS banner
IVES 9 IVES Conference Series 9 Does foliar fertilization with Seaweed improve the productivity and quality of ‘Merlot’ grape must?

Does foliar fertilization with Seaweed improve the productivity and quality of ‘Merlot’ grape must?

Abstract

Developing technologies that help vines survive and produce in quantity and quality within current times is mandatory. In this sense, in the 2021/2022 agricultural harvest, the influence of the foliar application of seaweed – Laminaria japonica was studied, aiming at productivity and quality of the must in the ‘Merlot’ grape. In the city of “Santana do Livramento”, “Rio Grande do Sul” (RS), Brazil; in a 15-year-old commercial vineyard of ‘Merlot’ clone ENTAV-INRA® 347, grafted onto ‘SO4’ rootstock, the following treatments were applied on 6 occasions: No treatment (control) and; Foliar application of Laminaria japonica seaweed (commercial product: Exal (ALAS), 2 kg ha-1) The treatments consisted of 4 replications (interval) and each interval had 4 plants. The response variables evaluated at harvest time were: productivity (t ha-1). Using the WineScanTM SO2 equipment (FOSS®, Denmark) the must was evaluated: density [g (cm3)-1], sugars (g L-1), pH, tartaric acid (g L-1), malic acid (g L-1), gluconic acid (g L-1), ammonia content (mg L-1), potassium content (mg L-1), total acidity (g L-1 in tartaric acid). The treatment with foliar application of seaweed stood out in productivity (11.3 t ha-1) when compared to the control treatment (9.8 t ha-1). In the must, the potassium content showed significant differences between the treatments, with a reduced level being obtained with the foliar application of seaweed. It is preliminarily concluded that the application of foliar fertilizer based on seaweed (Laminaria japonica) increased the productivity of ‘Merlot’ vines and reduced the potassium content in the must.

Acknowledgements: To the Company “Algas” América Latina Agricultura Sustentável (ALAS), in the names of its managing partners, Luis Augusto Bennemann de Souza and Fernando Carbonari Collares, for the donation of organic fertilizer composed of Marine Algae (Exal), and for the contribution with some inputs to the execution of this research.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Juan Saavedra del Aguila1*, Isabel Cristina Robaina Figueira Freitas1, Jansen Moreira Silveira1, Joana Darque Ribeiro Ozório1, Etiane Skrebsky Quadros1, Fabrício Domingues2, Lília Sichmann Heiffig-del Aguila3

1 Federal University of Pampa (UNIPAMPA)/Campus Dom Pedrito, Bachelor’s Degree in Enology
2 Consultant in Winegrowing and Agribusiness Management
3 Embrapa Temperate Climate

Contact the author*

Keywords

Vitis vinifera, sustainability, organic fertilizer, organic production, climate change

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Towards more coherent rules for alcohol labelling in the European Union

In its 2020 beating cancer plan, the european commission announced plans for mandatory warning signs for alcoholic beverages. However, no concrete legislative proposal has been put forward so far. Instead, ireland passed national legislation in 2023 that requires warning signs for all alcoholic beverages from 2026. Despite significant effects for the common market, the eu commission did not this challenge this law in the so-called tris notification procedure. We argue that the commission’s inaction is consistent with the case law of the european court of justice: in the absence of harmonized rules, member states have a large margin of discretion to enact national health measures.

Inhibitory effect of sulfur dioxide, ascorbic acid and glutathione on browning caused by laccase activity

AIM: The aim of this work was to study the inhibitory effect of the three most frequently used wine antioxidants – sulfur dioxide, ascorbic acid and glutathione – on the kinetics of browning caused by Botrytis cinerea laccase using a grape juice synthetic model in which (-)-epicatechin was the substrate.

Impact of SO2 addition before alcoholic fermentation on the oxidative stability of Chardonnay white wines

Sulfites (SO2) addition during winemaking is a widespread practice worldwide. This addition is realized at different steps of the winemaking due to the antimicrobial and antioxidant capacity of SO2. In a context of understanding white wines oxidative stability, knowledge about the impact of SO2 on the wine molecular diversity, especially compounds involved in the antioxidant capacity of wine, appears to be very important. In recent years, some studies have shown that SO2 can react with a large number of wine compounds resulting in the formation of numerous adducts. The diversity of compounds involved is important including in particular pyruvic acid, 2-keto-glutaric acid, glyceraldehyde, sugar, phenolics compounds but also amino acids or peptides. Moreover Roullier-Gall et al. have shown using FT-ICR-MS analysis that the molecular composition of wines remains impacted by addition of SO2 to the must (0, 4 and 8 g/hL SO2), several years after winemaking. Indeed, wines made from protected must (8g/hL SO2) contain a larger diversity of CHOS and CHONS compounds than wines made from unprotected must (0 g/hL SO2). The study of the impact of glutathione addition on the sensory oxidative stability has further shown that CHOS and CHONS compounds (amino acids, aromatic compounds and peptides) are markers of the antioxidant metabolome of white wines. This suggests that CHOS and CHONS compounds arise from SO2 adducts formation but also from a protecting effect of SO2 on the antioxidant metabolome of white wines.

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

Field evaluation of biofungicides to control powdery mildew and botrytis bunch rot of wine grapes in California

Grapevine powdery mildew caused by Erysiphe necator and Botrytis bunch rot caused by Botrytis cinerea are two of the most important fungal diseases in California grape production.