terclim by ICS banner
IVES 9 IVES Conference Series 9 Does foliar fertilization with Seaweed improve the productivity and quality of ‘Merlot’ grape must?

Does foliar fertilization with Seaweed improve the productivity and quality of ‘Merlot’ grape must?

Abstract

Developing technologies that help vines survive and produce in quantity and quality within current times is mandatory. In this sense, in the 2021/2022 agricultural harvest, the influence of the foliar application of seaweed – Laminaria japonica was studied, aiming at productivity and quality of the must in the ‘Merlot’ grape. In the city of “Santana do Livramento”, “Rio Grande do Sul” (RS), Brazil; in a 15-year-old commercial vineyard of ‘Merlot’ clone ENTAV-INRA® 347, grafted onto ‘SO4’ rootstock, the following treatments were applied on 6 occasions: No treatment (control) and; Foliar application of Laminaria japonica seaweed (commercial product: Exal (ALAS), 2 kg ha-1) The treatments consisted of 4 replications (interval) and each interval had 4 plants. The response variables evaluated at harvest time were: productivity (t ha-1). Using the WineScanTM SO2 equipment (FOSS®, Denmark) the must was evaluated: density [g (cm3)-1], sugars (g L-1), pH, tartaric acid (g L-1), malic acid (g L-1), gluconic acid (g L-1), ammonia content (mg L-1), potassium content (mg L-1), total acidity (g L-1 in tartaric acid). The treatment with foliar application of seaweed stood out in productivity (11.3 t ha-1) when compared to the control treatment (9.8 t ha-1). In the must, the potassium content showed significant differences between the treatments, with a reduced level being obtained with the foliar application of seaweed. It is preliminarily concluded that the application of foliar fertilizer based on seaweed (Laminaria japonica) increased the productivity of ‘Merlot’ vines and reduced the potassium content in the must.

Acknowledgements: To the Company “Algas” América Latina Agricultura Sustentável (ALAS), in the names of its managing partners, Luis Augusto Bennemann de Souza and Fernando Carbonari Collares, for the donation of organic fertilizer composed of Marine Algae (Exal), and for the contribution with some inputs to the execution of this research.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Juan Saavedra del Aguila1*, Isabel Cristina Robaina Figueira Freitas1, Jansen Moreira Silveira1, Joana Darque Ribeiro Ozório1, Etiane Skrebsky Quadros1, Fabrício Domingues2, Lília Sichmann Heiffig-del Aguila3

1 Federal University of Pampa (UNIPAMPA)/Campus Dom Pedrito, Bachelor’s Degree in Enology
2 Consultant in Winegrowing and Agribusiness Management
3 Embrapa Temperate Climate

Contact the author*

Keywords

Vitis vinifera, sustainability, organic fertilizer, organic production, climate change

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Post-plant nematicides: too little, too late for Northern root-knot nematode management

Context and Purpose. Management of plant-parasitic nematodes in perennial cropping systems such as wines grapes is challenging.

Viticultural landscape: history of a challenging coexistence between grapevines and humans 

Vitis vinifera is the most grown grapevine species, which originated about 6 million years ago in the trans-caucasian area as the ancestral (wild) type v. Vinifera spp. Sylvestris. On the other hand, the human being (homo sapiens) is much younger since he originated about 300.000 years ago in north africa.

Influence de la nutrition potassique sur le manque d’acidité des vins issus du cépage Negrette

A worrying drop in the acidity of wines has been observed in many wine regions, such as Bordeaux (Merlot), Burgundy (Pinot Noir), Côtes-du-Rhône (Grenache) or Rioja (Tempranillo). This lack of acidity is particularly marked in the Midi-Pyrenean vineyards of the Côtes du Frontonnais (Tournier, 1993). However, the acidity of a wine is one of the main factors of its quality, in fact, a low acidity combined with an insufficient tannic structure leads to rapid oxidation of wines and makes them age prematurely.

Can plant shaking reduce the incidence of Botrytis?

Wine production is expanding in Scandinavia with a focus on organic growing, and Solaris becoming the signature grape of the region.

Riesling as a model to irrigate white wine grape varieties in arid climates

Regulated deficit irrigation (RDI) is a common viticultural practice for wine grape production. In addition to the potential improvement of water use efficiency, the adoption of this technique favors smaller canopies with higher levels of fruit sun exposure, enhancing quality attributes associated with red wine grapes such as smaller berries with higher tannins and anthocyanins. However, these quality attributes do not necessarily transfer to white wine grapes. The goal of this project was to assess whether partial rootzone drying (PRD) is more suited than RDI to grow high-end white wine grapes in arid climates, especially aromatic varieties, using Riesling as a model.