terclim by ICS banner
IVES 9 IVES Conference Series 9 Does foliar fertilization with Seaweed improve the productivity and quality of ‘Merlot’ grape must?

Does foliar fertilization with Seaweed improve the productivity and quality of ‘Merlot’ grape must?

Abstract

Developing technologies that help vines survive and produce in quantity and quality within current times is mandatory. In this sense, in the 2021/2022 agricultural harvest, the influence of the foliar application of seaweed – Laminaria japonica was studied, aiming at productivity and quality of the must in the ‘Merlot’ grape. In the city of “Santana do Livramento”, “Rio Grande do Sul” (RS), Brazil; in a 15-year-old commercial vineyard of ‘Merlot’ clone ENTAV-INRA® 347, grafted onto ‘SO4’ rootstock, the following treatments were applied on 6 occasions: No treatment (control) and; Foliar application of Laminaria japonica seaweed (commercial product: Exal (ALAS), 2 kg ha-1) The treatments consisted of 4 replications (interval) and each interval had 4 plants. The response variables evaluated at harvest time were: productivity (t ha-1). Using the WineScanTM SO2 equipment (FOSS®, Denmark) the must was evaluated: density [g (cm3)-1], sugars (g L-1), pH, tartaric acid (g L-1), malic acid (g L-1), gluconic acid (g L-1), ammonia content (mg L-1), potassium content (mg L-1), total acidity (g L-1 in tartaric acid). The treatment with foliar application of seaweed stood out in productivity (11.3 t ha-1) when compared to the control treatment (9.8 t ha-1). In the must, the potassium content showed significant differences between the treatments, with a reduced level being obtained with the foliar application of seaweed. It is preliminarily concluded that the application of foliar fertilizer based on seaweed (Laminaria japonica) increased the productivity of ‘Merlot’ vines and reduced the potassium content in the must.

Acknowledgements: To the Company “Algas” América Latina Agricultura Sustentável (ALAS), in the names of its managing partners, Luis Augusto Bennemann de Souza and Fernando Carbonari Collares, for the donation of organic fertilizer composed of Marine Algae (Exal), and for the contribution with some inputs to the execution of this research.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Juan Saavedra del Aguila1*, Isabel Cristina Robaina Figueira Freitas1, Jansen Moreira Silveira1, Joana Darque Ribeiro Ozório1, Etiane Skrebsky Quadros1, Fabrício Domingues2, Lília Sichmann Heiffig-del Aguila3

1 Federal University of Pampa (UNIPAMPA)/Campus Dom Pedrito, Bachelor’s Degree in Enology
2 Consultant in Winegrowing and Agribusiness Management
3 Embrapa Temperate Climate

Contact the author*

Keywords

Vitis vinifera, sustainability, organic fertilizer, organic production, climate change

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

GrapeBreed4IPM: developing sustainable solutions for viticulture through multi-actor innovation targeting breeding for integrated pest management

According to the World Economic Forum and the European Union’s Biodiversity Strategy for 2030, the loss of biodiversity and the collapse of ecosystems are major threats facing humanity in the future.

Winter physiology in a warmer world: Cold hardiness and deacclimation sensitivity drive variation in spring phenology

As the climate warms, the focus of concern in viticulture often turns to how higher temperatures may shift growing regions, change the character of AVAs, and alter fruit quality. However, climate warming is increasing most quickly during the winter dormancy cycle, a critical and often underappreciated portion of the grapevine life cycle. In response to decreasing temperatures and decreasing daylength, grapes initiate a series of physiological changes to enter dormancy, acquire freeze resistance, and time spring phenology such that the growing season begins after threat of frost.

Cultures des vignobles en forte pente: possibilités de mécanisation. Effet de l’exposition et de l’orientation des rangs

Plus de la moitié du vignoble suisse (14’000 ha) est situé sur des coteaux en forte pente (> 30%). Dans certains vignobles, la pente naturelle du terrain a été réduite par la construction de terrasses soutenues par des murs.

The use of pulsed fluorescence detector to quantify free SO2 in wines via the headspace

Pulsed fluorescence SO2 analyzers are widely used for atmospheric monitoring. They are accurate, portable, sensitive and their price are reduced compared to advanced techniques like gas chromatography with sulfur chemiluminescence detection (GC-SCD).

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.