Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Mapping climate and bioclimatic indices at high-resolution in vineyard regions

Mapping climate and bioclimatic indices at high-resolution in vineyard regions

Abstract

Many of the world’s vineyard regions are located in regions of complex terrain, with the result there is significant local climate variation. The range of climatic conditions provides the opportunity for wine producers to readily adapt to the increasing influence of global warming on wine production by adjusting grape varieties and management practices to suit local environmental conditions. However, to allow this to happen, knowledge of fine scale variations in climate in vineyard regions needs to be improved. Our recent research has demonstrated that mesoscale atmospheric numerical models can be used to provide a good representation of the small-scale variations of climate in such regions of complex terrain. They are particularly useful for mapping mean daily temperature, which is the main variable used to derive bioclimatic indices of relevance to grapevine growth (such as the Huglin, Winkler, Grapevine Flowering Véraison and cool nights indices).

This paper provides examples of recent research in which the Weather Research and Forecasting climate model has been used to improve our understanding of climate variability at high spatial (1 km and less) and temporal (hourly) resolution within vineyard regions of different terrain complexity (e.g. in South Africa, New Zealand and France). Model performance is evaluated through comparison with automatic weather stations. The model output is used to investigate the spatial variability of derived bioclimatic indices and climatic hazards such as the occurrence of late frost, at high resolution across vineyard regions. Further analysis has also provided useful insights into grapevine response to spatial variability of climate through the prediction and mapping of dates of the key phenological stages of flowering and véraison.”.

DOI:

Publication date: June 22, 2020

Issue: Terroir 2016

Type: Article

Authors

Andrew Sturman (1), Peyman Zawar-Reza (1), Iman Soltanzadeh (2), Marwan Katurji (1), Valérie Bonnardot (3), Amber Parker (4), Mike Trought (5), Hervé Quénol (3), Renan Le Roux (3), Eila Gendig (6) and Tobias Schulmann (7)

(1) Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand
(2) MetService, Wellington, New Zealand
(3) LETG-Rennes COSTEL, UMR 6554 CNRS, Université Rennes 2, Rennes, France
(4) Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
(5) Plant & Food Research Ltd., Marlborough Wine Research Centre, Blenheim, New Zealand
(6) Department of Conservation, Christchurch, New Zealand
(7) Catalyst, Christchurch, New Zealand

Contact the author

Keywords

Terroir, climate, bioclimatic indices, mapping, zoning

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

Understanding the onset of systemic infection of red blotch virus and phenotypic studies of grapevines expressing a red blotch virus infectious clone

Context and purpose of the study. Red Blotch disease, an affliction caused by the Grapevine red blotch-associated virus (GRBaV), represents a formidable challenge for grape growers and winemakers in prominent viticultural regions around the world.

Peptides diversity and oxidative sensitivity: case of specific optimized inactivated yeasts

Estimation of the resistance of a wine against oxidation is of great importance for the wine. To that purpose, most of the commonly used chemical assays that are dedicated to estimate the antioxidant (or antiradical) capacity of a wine consist in measuring the capacity of the wine to reduce an oxidative compound or a stable radical.

How to improve the mouthfeel of wines obtained by excessive tannin extraction

Red wines felt as astringent and bitter generally show high content of tannins due to grape phenolic compounds’ extraction in the maceration process. Among different enological practices, mannoproteins have been shown to improve the mouthfeel of red wines (1) and the color (2,3). In this work, we evaluated the effect of mannoproteins on the mouthfeel profile of Sangiovese wines obtained by excessive tannin extraction.

Investigating kokumi flavour oligopeptides in wine

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the Kokumi sensory concept [1].