Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Mapping climate and bioclimatic indices at high-resolution in vineyard regions

Mapping climate and bioclimatic indices at high-resolution in vineyard regions

Abstract

Many of the world’s vineyard regions are located in regions of complex terrain, with the result there is significant local climate variation. The range of climatic conditions provides the opportunity for wine producers to readily adapt to the increasing influence of global warming on wine production by adjusting grape varieties and management practices to suit local environmental conditions. However, to allow this to happen, knowledge of fine scale variations in climate in vineyard regions needs to be improved. Our recent research has demonstrated that mesoscale atmospheric numerical models can be used to provide a good representation of the small-scale variations of climate in such regions of complex terrain. They are particularly useful for mapping mean daily temperature, which is the main variable used to derive bioclimatic indices of relevance to grapevine growth (such as the Huglin, Winkler, Grapevine Flowering Véraison and cool nights indices).

This paper provides examples of recent research in which the Weather Research and Forecasting climate model has been used to improve our understanding of climate variability at high spatial (1 km and less) and temporal (hourly) resolution within vineyard regions of different terrain complexity (e.g. in South Africa, New Zealand and France). Model performance is evaluated through comparison with automatic weather stations. The model output is used to investigate the spatial variability of derived bioclimatic indices and climatic hazards such as the occurrence of late frost, at high resolution across vineyard regions. Further analysis has also provided useful insights into grapevine response to spatial variability of climate through the prediction and mapping of dates of the key phenological stages of flowering and véraison.”.

DOI:

Publication date: June 22, 2020

Issue: Terroir 2016

Type: Article

Authors

Andrew Sturman (1), Peyman Zawar-Reza (1), Iman Soltanzadeh (2), Marwan Katurji (1), Valérie Bonnardot (3), Amber Parker (4), Mike Trought (5), Hervé Quénol (3), Renan Le Roux (3), Eila Gendig (6) and Tobias Schulmann (7)

(1) Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand
(2) MetService, Wellington, New Zealand
(3) LETG-Rennes COSTEL, UMR 6554 CNRS, Université Rennes 2, Rennes, France
(4) Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
(5) Plant & Food Research Ltd., Marlborough Wine Research Centre, Blenheim, New Zealand
(6) Department of Conservation, Christchurch, New Zealand
(7) Catalyst, Christchurch, New Zealand

Contact the author

Keywords

Terroir, climate, bioclimatic indices, mapping, zoning

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Influence of the carbonic maceration winemaking method on the colour features of Tempranillo red wines

During recent years, carbonic maceration (CM) wines are increasingly demanded by consumers. The Spanish Rioja Qualified Designation of Origin (D.O.Ca. Rioja) is a winemaking area

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.

Atypical ageing defect in Pinot Blanc wines: influence of the grapevine production management.

Atypical ageing (ATA) is a wine aroma fault occurring in white wines characterised by an early loss of varietal aroma as well as nuances of wet mop, acacia blossom, shoe polish and dirty rag among others. 2-aminoacetophenone (2AAP) – a degradation product of indole-3-acetic acid (IAA) – has been described as the major odour-active compound and chemical marker responsible for this off-flavour. Depending on the aroma intensity of wines, its odour threshold varies from 0.5 to 10.5 μg/L. It seems that a stress reaction in the vineyard triggered by climatic, pedological and viticultural factors can ultimately cause ATA development in wines and therefore shorten their shelf-life.

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

During the tasting of a fine, old wine, the aromas generated in the glass are intertwined in an intimate, complex manner, expressing the fragrance of the aging bouquet. This aging bouquet, which develops during bottle storage through a complex transformation process, may result in a broad palette of nuances. Among these, undergrowth, truffle, toasted, spicy, licorice, fresh red- and black-berry fruit and mint descriptors were recently identified as features of its olfactory representation for red Bordeaux wines. Although a targeted chemical approach focusing on volatile sulfur compounds revealed the role played by dimethyl sulfide, 2-furanmethanethiol, and 3-sulfanylhexanol as molecular markers of the typicality of the wine aging bouquet of red Bordeaux wines, its chemical transcription has only partially been elucidated.