terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Abiotic interactions 9 Rootstock-scion contributions to seasonal water and light use diversity under field conditions

Rootstock-scion contributions to seasonal water and light use diversity under field conditions

Abstract

Cultivar and rootstock selection are two well-known strategies for adapting vine production in challenging environments. Despite the vast diversity of rootstocks and cultivars, their effective contribution to grapevine sustainable development and acclimation to changing growing conditions remains an open question. The use of robust and prompt monitoring tools can allow a powerful screening of the water status of the vineyard before considering a further detailed characterization. This study leveraged new tools to monitor the stomatal conductance (gs), transpiration rate (E), and quantum efficiency of photosystem II (ᶲPSII) throughout a season, from pre-veraison to after-harvest. The resulting dataset represent one of the largest and most comprehensive rootstock gas exchange studies to date, encompassing a broad range of rootstock-scion combinations: Grenache, Syrah and Cabernet Sauvignon cv. grafted onto the rootstocks 110R, 1103P, SO4, 5BB, 140Ru, and Fercal. A total of 45 measurements, distributed by three blocks, were undertaken per combination throughout eleven dates. Overall, the results show that water use diversity is driven primarily by the cultivar and to a much lesser extent the rootstocks, whose contribution is greatly influenced by environmental parameters (e.g. VPD, light, temperature, and precipitation) and vine development. Grenache cv. showed the lowest gs values during the experiment, displaying the most conservative water use strategy. On the other hand, light stress responses were more homogeneous across rootstock-scion combinations. Finally, the contribution of most rootstock-scion combinations was revealed to be complex and to vary greatly across the season.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Sara Bernardo1*, Hannah Chepy1, Marine Morel1, Elisa Marguerit1, Gregory A. Gambetta1

1UMR EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, Institute of Vine and Wine Science/ISVV, Villenave d’Ornon, France

Contact the author*

Keywords

gas exchange, grapevine, stomatal conductance, stress responses, water status

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels
(unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

Evaluation of the adaptation of Palomino Fino clones based on their physiological response

Genetic diversity within grapevine cultivars is a fundamental resource for varietal improvement and adaptation to cultivation requirements.

The role of œnology in the enhancement of terroir expression

The reality of terroir is reflected by the typicality that it confers on the wine. The relationship between the origin of wine and its quality did already exist before the appearance of œnological science. Producers and merchants have always tried to improve wine quality in order to satisfy their clients.

The importance of the physicochemical composition of wine on the score awarded in an official contest

The quality of wine is difficult to define. This is most certainly accredited to everyone´s different perception of quality. Some of the indicators of high-quality wines are color complexity and balance. Color is one of the most crucial attributes of quality, not only for the obvious implications for their perception but also because they are indicators of other aspects related to its aroma and taste.