terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Abiotic interactions 9 Rootstock-scion contributions to seasonal water and light use diversity under field conditions

Rootstock-scion contributions to seasonal water and light use diversity under field conditions

Abstract

Cultivar and rootstock selection are two well-known strategies for adapting vine production in challenging environments. Despite the vast diversity of rootstocks and cultivars, their effective contribution to grapevine sustainable development and acclimation to changing growing conditions remains an open question. The use of robust and prompt monitoring tools can allow a powerful screening of the water status of the vineyard before considering a further detailed characterization. This study leveraged new tools to monitor the stomatal conductance (gs), transpiration rate (E), and quantum efficiency of photosystem II (ᶲPSII) throughout a season, from pre-veraison to after-harvest. The resulting dataset represent one of the largest and most comprehensive rootstock gas exchange studies to date, encompassing a broad range of rootstock-scion combinations: Grenache, Syrah and Cabernet Sauvignon cv. grafted onto the rootstocks 110R, 1103P, SO4, 5BB, 140Ru, and Fercal. A total of 45 measurements, distributed by three blocks, were undertaken per combination throughout eleven dates. Overall, the results show that water use diversity is driven primarily by the cultivar and to a much lesser extent the rootstocks, whose contribution is greatly influenced by environmental parameters (e.g. VPD, light, temperature, and precipitation) and vine development. Grenache cv. showed the lowest gs values during the experiment, displaying the most conservative water use strategy. On the other hand, light stress responses were more homogeneous across rootstock-scion combinations. Finally, the contribution of most rootstock-scion combinations was revealed to be complex and to vary greatly across the season.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Sara Bernardo1*, Hannah Chepy1, Marine Morel1, Elisa Marguerit1, Gregory A. Gambetta1

1UMR EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, Institute of Vine and Wine Science/ISVV, Villenave d’Ornon, France

Contact the author*

Keywords

gas exchange, grapevine, stomatal conductance, stress responses, water status

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Phenology and maturation of Cabernet Sauvignon grapes from young vineyards at Santa Catarina state, Brazil – a survey of vineyard altitude and mesoclimat influences

Cabernet Sauvignon grapes from recently planted vines in Santa Catarina State (Brazil), were sampled during ripening from the 2005 and 2006 vintages.

Bio‐metaethics viticulture proposed by the Giesco. Direct charter with producers. Example of evaluation of training systems

The key points of the current GiESCO charter ‘BIO‐MetaEthics’ are exposed. The new development in cooperation with Giovanni Cargnello is to apply the principles and the content into the practice by establishing a direct contract with producers and other actors of the wine sector. An evaluation sheet is proposed and tested in a new advanced vineyard. For illustrating the methodology of evaluation, the example of the choice of the training systems is detailed on a wide range of situations. 

Zonage viticole des surfaces potentielles dans la vallée Centrale de Tarija (Bolivie)

La présente étude de zonage viticole a été faite dans la région de la vallée Central de Tarija(VCT), dans la ville de Tarija, au Sud de la Bolivie; une région avec plus de 400 années de tradition qui présente une vitiviniculture de haute qualité. La Vallée possède une surface total de 332 milles ha.; existant des vignobles entre 1660 y 2300 m.s.n.m. et dans ce rang d’altitude il existe 91 mille ha.

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².

Enhancing sustainability in viticulture through digital technologies: A case study from Smyrnakis winery

The integration of digital technologies in vineyard management offers substantial opportunities for enhancing sustainability, efficiency, and grape quality.