terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Abiotic interactions 9 Rootstock-scion contributions to seasonal water and light use diversity under field conditions

Rootstock-scion contributions to seasonal water and light use diversity under field conditions

Abstract

Cultivar and rootstock selection are two well-known strategies for adapting vine production in challenging environments. Despite the vast diversity of rootstocks and cultivars, their effective contribution to grapevine sustainable development and acclimation to changing growing conditions remains an open question. The use of robust and prompt monitoring tools can allow a powerful screening of the water status of the vineyard before considering a further detailed characterization. This study leveraged new tools to monitor the stomatal conductance (gs), transpiration rate (E), and quantum efficiency of photosystem II (ᶲPSII) throughout a season, from pre-veraison to after-harvest. The resulting dataset represent one of the largest and most comprehensive rootstock gas exchange studies to date, encompassing a broad range of rootstock-scion combinations: Grenache, Syrah and Cabernet Sauvignon cv. grafted onto the rootstocks 110R, 1103P, SO4, 5BB, 140Ru, and Fercal. A total of 45 measurements, distributed by three blocks, were undertaken per combination throughout eleven dates. Overall, the results show that water use diversity is driven primarily by the cultivar and to a much lesser extent the rootstocks, whose contribution is greatly influenced by environmental parameters (e.g. VPD, light, temperature, and precipitation) and vine development. Grenache cv. showed the lowest gs values during the experiment, displaying the most conservative water use strategy. On the other hand, light stress responses were more homogeneous across rootstock-scion combinations. Finally, the contribution of most rootstock-scion combinations was revealed to be complex and to vary greatly across the season.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Sara Bernardo1*, Hannah Chepy1, Marine Morel1, Elisa Marguerit1, Gregory A. Gambetta1

1UMR EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, Institute of Vine and Wine Science/ISVV, Villenave d’Ornon, France

Contact the author*

Keywords

gas exchange, grapevine, stomatal conductance, stress responses, water status

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

Sensory analysis in oenology: the role of methodological differences in expert panel evaluations

Sensory analysis is an essential component of oenology, offering valuable insights into wine quality that influence decision-making in viticulture and winemaking.