terclim by ICS banner
IVES 9 IVES Conference Series 9 PIWIs’ variation in drought response under semi-controlled conditions 

PIWIs’ variation in drought response under semi-controlled conditions 

Abstract

Grapevine interspecific hybrids (PIWIs, from German “pilzwiderstandsfähige Rebsorten” meaning fungus tolerant grapevine cultivars), offer a promising alternative to traditional cultivars in many wine regions due to their tolerance to certain fungal diseases. This makes them a potential solution for sustainable wine production, particularly under organic systems. Despite extensive research on certain agronomic traits and susceptibility to biotic diseases, such as powdery and downy mildews, the response of these cultivars to abiotic stressors, such as drought, remains unclear. Our study aims to investigate the eco-physiological traits of two commercial PIWI cultivars, Muscaris and Souvignier gris, at the leaf level to evaluate their response to drought stress. We conducted a two-year experiment on potted plants under semi-controlled conditions to eliminate the potential effects of environmental factors. The results of stomatal conductance indicate that Souvignier gris consumes more water than Muscaris. However, under well-watered conditions, Muscaris vines deplete soil water faster and exhibit lower stomatal conductance values than Souvignier gris. Further research is required to address remaining questions about PIWIs’ response to drought, including investigating variations in leaf area or anatomy.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Lea Linhart1*, Jacopo Innocenti1, Philipp Klumpp1, Astrid Forneck1, José Carlos Herrera1

1 University of Natural Resources and Life Sciences Vienna (BOKU), Institute of Viticulture and Pomology, Department of Crop Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria

Contact the author*

Keywords

grapevine, PIWIs, abiotic stress, drought response, eco-physiology

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.

French AOC positioning and their concepts and extension to other products

Constitue une appellation d’origine “la dénomination géographique d’un pays, d’une région ou d’une localité servant à désigner un produit qui en est originaire, et dont la qualité ou les caractères sont dus exclusivement ou essentiellement au milieu géographique, comprenant les facteurs naturels et les facteurs humains …”

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

Impact of glutathione-rich inactivated yeast on wine chemical diversity

Glutathione-rich inactivated dry yeasts (GSH-IDY) are claimed to accumulate intracellularly and then release glutathione in the must.