terclim by ICS banner
IVES 9 IVES Conference Series 9 PIWIs’ variation in drought response under semi-controlled conditions 

PIWIs’ variation in drought response under semi-controlled conditions 

Abstract

Grapevine interspecific hybrids (PIWIs, from German “pilzwiderstandsfähige Rebsorten” meaning fungus tolerant grapevine cultivars), offer a promising alternative to traditional cultivars in many wine regions due to their tolerance to certain fungal diseases. This makes them a potential solution for sustainable wine production, particularly under organic systems. Despite extensive research on certain agronomic traits and susceptibility to biotic diseases, such as powdery and downy mildews, the response of these cultivars to abiotic stressors, such as drought, remains unclear. Our study aims to investigate the eco-physiological traits of two commercial PIWI cultivars, Muscaris and Souvignier gris, at the leaf level to evaluate their response to drought stress. We conducted a two-year experiment on potted plants under semi-controlled conditions to eliminate the potential effects of environmental factors. The results of stomatal conductance indicate that Souvignier gris consumes more water than Muscaris. However, under well-watered conditions, Muscaris vines deplete soil water faster and exhibit lower stomatal conductance values than Souvignier gris. Further research is required to address remaining questions about PIWIs’ response to drought, including investigating variations in leaf area or anatomy.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Lea Linhart1*, Jacopo Innocenti1, Philipp Klumpp1, Astrid Forneck1, José Carlos Herrera1

1 University of Natural Resources and Life Sciences Vienna (BOKU), Institute of Viticulture and Pomology, Department of Crop Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria

Contact the author*

Keywords

grapevine, PIWIs, abiotic stress, drought response, eco-physiology

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

Assay of distinct modes of polysaccharidases dosage in vinification with cv. Malbec. Effects on microbiological evolution, color and skin depletion

In the maceration stage of winemaking, enzymes can be used to degrade the polysaccharides present in the cell walls and middle sheets, and thus facilitate the extraction of juice and the release of polyphenols and aroma precursors retained in the grape skins.

An effective method for extracting high-quality RNA from grapevine

Grapevine (Vitis vinifera L.) is one of the most important economic crops in the world. Because of this importance, one finds widespread molecular genetic research on this species, an important element of which is high quality RNA.

Is wine terroir a valid concept under a changing climate?

The OIV[i] defines terroir as a concept referring to an area in which collective knowledge of the interactions between the physical and biological environment (soil, topography, climate, landscape characteristics and biodiversity features) and vitivinicultural practices develops, providing distinctive wine characteristics. Those are perceptible in the taste of wine, which drives consumer preference and, therefore, wine’s value in the marketplace. Geographical indications (GI) are recognized regulatory constructs formalizing and protecting the nexus between wine taste and the terroir generating it. Despite considering updates, GIs do not consider the nexus as a dynamic one and do not anticipate change, namely of climate. Being climate a fundamental feature of terroir, it strongly impacts wine characteristics, such as taste. According to IPCC[ii], many widespread, rapid and unprecedented changes of climate occurred, some being irreversible over hundreds to thousands of years. Climatic shifts and atmospheric-driven extreme events have been widely reported worldwide. Recent climatic trends are projected to strengthen in upcoming decades, whereas extremes are expected to increase in frequency and intensity, forcing wines away from GI definitions. Geographical shifts of viticultural suitability are projected, often moving into regions and countries different from current ones. Some authors propose adaptation in viticulture, winemaking and product innovation. We show evidence of climate changing wine characteristics in the Douro valley, home of 270-year-old Port GI. We discuss herein resist or adapt stances for when climate changes the nexus between terroir and wine characteristics. Using the MED-GOLD[iii] dashboard, a tool allowing for easy visual navigation of past and future climates, we demonstrate how policymakers can identify future moments, throughout the 21st century under different emission scenarios, when GI specifications will likely need updates (e.g., boundaries, varieties) to reduce climate-change impacts.

Outside and inside grapevine roots: arbuscular mycorrhizal fungal communities in a ‘nebbiolo’ vineyard 

In field conditions, grapevine roots are colonized by arbuscular mycorrhizal fungi (AMF). Little is known about the species composition of AMF communities associated to grapevine.