terclim by ICS banner
IVES 9 IVES Conference Series 9 PIWIs’ variation in drought response under semi-controlled conditions 

PIWIs’ variation in drought response under semi-controlled conditions 

Abstract

Grapevine interspecific hybrids (PIWIs, from German “pilzwiderstandsfähige Rebsorten” meaning fungus tolerant grapevine cultivars), offer a promising alternative to traditional cultivars in many wine regions due to their tolerance to certain fungal diseases. This makes them a potential solution for sustainable wine production, particularly under organic systems. Despite extensive research on certain agronomic traits and susceptibility to biotic diseases, such as powdery and downy mildews, the response of these cultivars to abiotic stressors, such as drought, remains unclear. Our study aims to investigate the eco-physiological traits of two commercial PIWI cultivars, Muscaris and Souvignier gris, at the leaf level to evaluate their response to drought stress. We conducted a two-year experiment on potted plants under semi-controlled conditions to eliminate the potential effects of environmental factors. The results of stomatal conductance indicate that Souvignier gris consumes more water than Muscaris. However, under well-watered conditions, Muscaris vines deplete soil water faster and exhibit lower stomatal conductance values than Souvignier gris. Further research is required to address remaining questions about PIWIs’ response to drought, including investigating variations in leaf area or anatomy.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Lea Linhart1*, Jacopo Innocenti1, Philipp Klumpp1, Astrid Forneck1, José Carlos Herrera1

1 University of Natural Resources and Life Sciences Vienna (BOKU), Institute of Viticulture and Pomology, Department of Crop Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria

Contact the author*

Keywords

grapevine, PIWIs, abiotic stress, drought response, eco-physiology

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence of the vintage, clone and rootstock on the chemical characteristics of Syrah tropical wines from Brazil

In the Northeast of Brazil, vines can produce twice a year, because annual average temperature is 26ºC, with high solar radiation and water availability for irrigation.

Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

High temperatures typical of warm climates cause the colour of red wines to become increasingly unstable over time.

Physical-chemical characterization of Moscatel de Setúbal fortified wines from different vintages

Moscatel de Setúbal is a Portuguese fortified wine with Protected Designation of Origin (PDO Setúbal), made from Moscatel de Setúbal grape variety (Muscat of Alexandria) [1].

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.