terclim by ICS banner
IVES 9 IVES Conference Series 9 Leaf elemental composition in a replicated hybrid grape progeny grown in distinct climates

Leaf elemental composition in a replicated hybrid grape progeny grown in distinct climates

Abstract

The elemental composition (the ionome) of grape leaves is an important indicator of nutritional health, but its genetic architecture has received limited scientific attention. In this study, we analyzed the leaf ionome of 131 interspecific F1 hybrid progeny from a Vitis rupestris (♀) X Vitis riparia (♂) cross. The progeny were replicated in New York, South Dakota, Southwest Missouri ad Central Missouri, and the concentration of 20 elements were measured in their leaves at three different phenological stages during the growing season. In leaves collected at the apical node at anthesis, elemental concentrations correlated in a consistent manner (p < 0.05) across all four geographic locations. In subsequent phenological stages, elemental ratios in the apical-node leaves remained consistent across the South Dakota and New York sites, but not across the Missouri sites. In leaves collected at the basal and middle nodes, correlations varied greatly across all locations. Varimax-rotated PCA performed on the leaf ionome separated the two Missouri vineyards from their New York and South Dakota counterparts, even though the first two principal components accounted for only 27.8% of the variance. Using a GBS-based linkage map and the concentration of individual elements as phenotype, we were able to map nine QTL which could be detected at more than one vineyard locations. We were also able detect a QTL when we applied ionomic profile-derived PC1 scores as phenotype. Interestingly, this PCA-derived QTL mapped to the same locus as the QTL for potassium concentration.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Jesse Krokower1, Courteny Coleman1, Courtney Duncan1, Zachary Harris2, Samantha Mazumder2, Anne Fennell3, Allison Miller2, Jason Londo4, Misha Kwasniewski5, Laszlo Kovacs1*

1 Department of Biology, Missouri State University, Springfield, MO USA
2 Donald Danforth Plant Science Center, St. Louis, MO USA
3 Department of Plant Science, South Dakota State University, Brookings, SD USA
School of Integrative Plant Science, Cornell University, Geneva, NY USA
Department of Food Science, Pennsylvania State University, University Park, PA USA

Contact the author*

Keywords

Ionome, mineral nutrition, quantitative trait loci, Vitis rupestris, Vitis riparia

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Late season canopy management practices to reduce sugar loading and improve color profile of Cabernet-Sauvignon grapes and wines in the high irradiance and hot conditions of California Central Valley

Global warming is accelerating grape ripening, leading to unbalanced wines from fruit with high sugar content but poor aroma and colour development. Reducing the size of the photosynthetic apparatus after veraison has been shown to delay technological ripeness in cool climates, but methods have not been tested in areas with high irradiance and temperature where fruit exposure could have disastrous effects on berry composition. In this Cabernet-Sauvignon trial, we compared the application of an antitranspirant (pinolene), to severe canopy topping and above bunch zone leaf removal, all performed at mid-ripening, with an untouched control. We monitored the vines weekly by measuring stem water potential, gas exchange, fruit zone light exposure. We sampled berries to measure berry weight, total soluble solids, pH, titratable acidity, and the anthocyanin profile. At harvest, we assessed yield components, measured carbon isotope discrimination, rated sunburn on clusters, and produced experimental wines. We submitted harvest samples to metabolomic profiling through PFP-Q Exactive MS/MS and wines to sensory analysis. Application of the antitranspirant significantly reduced stomatal conductance and assimilation rate but did not affect the stem water potential. Inversely, leaf removal and topping increased water potential but did not affect leaf gas exchange. The late topping was the only treatment able to decrease sugar content (up to 2Bx), increase titratable acidity and pH, and improve anthocyanin content because of lower degradation of di-hydroxylated forms. Late leaf removal above the bunch zone increased lightning conditions in the canopy and produced the most significant damage on fruits. Yield components were not affected. This work suggests that late-season canopy management can effectively control ripening speeds and improve grapes and wines. Still, the effect on grape exposure in a critical time must be well balanced to avoid problems with the appropriate technique.

Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Acacia senegal gum (Asen) is an edible dried gummy exudate [1] added in young red wines to ensure their colloidal stability, precluding the precipitation of the coloring matter. Asen macromolecules, belonging to the arabinogalactan-protein (AGP) family [2], are hyperbranched, charged and amphiphilic heteropolysaccharides composed especially of sugars (92-96 %) and a small fraction of proteins (1-3 %). Asen is defined as a continuum of macromolecules that could be separated into three fractions by hydrophobic interaction chromatography (HIC) [3-4]. HIC-F1 (85-94 % of Asen), HIC-F2 (6-18 % of Asen) and HIC-F3 (1-3 % of Asen) are named and classified in that order according to their protein content, and then a growing hydrophobicity. The efficiency of Asen towards the coloring matter instability is evaluated according to an “efficacy test” that consists to determine the Asen quantity required to prevent the flocculation by calcium of a colloidal iron hexacyanoferrate solution (International Oenological Codex).

The influence of site aspect and pruning types on Pinot Noir phenology and shoot growth

Aim: Managing the influence that terroir in vineyards has on vine development depends on improving our understanding the effect of the interaction of within-site variability, within-vine variability, and management practices (such as pruning types) on phenology and vine development. This study evaluates the consequence of site aspect

Wine as cultural national heritage: 10 years of the “Vino Bebida Nacional” law in Argentina: review and lessons

Ten years have passed since the enactment and implementation of law no. 26,870 “national drink wine” in Argentina, a pioneering legislation worldwide that seeks to disseminate the cultural characteristics inherent in the production, elaboration, and consumption of wine, as well as its deep-rooted traditions.

Response of Albariño to local environmental conditions in Uruguay

Albariño is a white cultivar that has been recently promoted in Uruguay due to its ability to maintain high berry quality even in adverse climate conditions during ripening. This study aims to assess the effect of different topographic conditions on Albariño agronomic behavior and oenological potential.