terclim by ICS banner
IVES 9 IVES Conference Series 9 Leaf elemental composition in a replicated hybrid grape progeny grown in distinct climates

Leaf elemental composition in a replicated hybrid grape progeny grown in distinct climates

Abstract

The elemental composition (the ionome) of grape leaves is an important indicator of nutritional health, but its genetic architecture has received limited scientific attention. In this study, we analyzed the leaf ionome of 131 interspecific F1 hybrid progeny from a Vitis rupestris (♀) X Vitis riparia (♂) cross. The progeny were replicated in New York, South Dakota, Southwest Missouri ad Central Missouri, and the concentration of 20 elements were measured in their leaves at three different phenological stages during the growing season. In leaves collected at the apical node at anthesis, elemental concentrations correlated in a consistent manner (p < 0.05) across all four geographic locations. In subsequent phenological stages, elemental ratios in the apical-node leaves remained consistent across the South Dakota and New York sites, but not across the Missouri sites. In leaves collected at the basal and middle nodes, correlations varied greatly across all locations. Varimax-rotated PCA performed on the leaf ionome separated the two Missouri vineyards from their New York and South Dakota counterparts, even though the first two principal components accounted for only 27.8% of the variance. Using a GBS-based linkage map and the concentration of individual elements as phenotype, we were able to map nine QTL which could be detected at more than one vineyard locations. We were also able detect a QTL when we applied ionomic profile-derived PC1 scores as phenotype. Interestingly, this PCA-derived QTL mapped to the same locus as the QTL for potassium concentration.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Jesse Krokower1, Courteny Coleman1, Courtney Duncan1, Zachary Harris2, Samantha Mazumder2, Anne Fennell3, Allison Miller2, Jason Londo4, Misha Kwasniewski5, Laszlo Kovacs1*

1 Department of Biology, Missouri State University, Springfield, MO USA
2 Donald Danforth Plant Science Center, St. Louis, MO USA
3 Department of Plant Science, South Dakota State University, Brookings, SD USA
School of Integrative Plant Science, Cornell University, Geneva, NY USA
Department of Food Science, Pennsylvania State University, University Park, PA USA

Contact the author*

Keywords

Ionome, mineral nutrition, quantitative trait loci, Vitis rupestris, Vitis riparia

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

High temperatures typical of warm climates cause the colour of red wines to become increasingly unstable over time.

Australia’s Wine Future: A Climate Atlas

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Application of zoning for wine production, digitalisation and traceability

Depuis la création des outils d’amélioration et de suivi de la qualité, le CREDO développe et réalise des zonages de potentialités viticoles.

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].