Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Climate change projections in serbian wine-growing regions

Climate change projections in serbian wine-growing regions

Abstract

Changes in bioclimatic indices in wine-growing region of Serbia are analyzed under the RCP 8.5 IPCC scenario. Results of a global climate model are dynamically downscaled on a horizontal resolution of about 8 km, using a regional model NMMB for a period 1971-2100. Statistical bias correction of regional climate model’s daily outputs of precipitation, minimum and maximum temperature are done for an entire territory of Serbia, using a dataset of daily observation on a regular 8 km grid. Four of bioclimatic indices widely used in viticulture were calculated from the observations in the period 1971-2000 and from the bias corrected model output for two periods in the future, 2011-2040 and 2071-2100.

Results show temperature increase, especially during the vegetation period. By the end of the century precipitation amount during the growing season will significantly drop, alongside with a change of the intramural precipitation distribution towards the Mediterranean climate characteristics. Consequently, climate characteristics of Serbian wine-growing regions will drastically change towards a very warm and moderately dry climate categories.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Mirjam VUJADINOVIC (1,2), Ana VUKOVIC (1,2,) Darko JAKSIC (3), Vladimir DJURDJEVIC (4,2), Mirjana RUML (1), Zorica RANKOVIC-VASIC (1), Zoran PRZIC (1), Branislava SIVCEV (1), Nebojsa MARKOVIC (1), Bojan CVETKOVIC (2), Pierfederico LA NOTTE (5)

(1) Department of Viticulture, Institute of Horticulture, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Nemanjina 6., Serbia
(2) South East European Climate Change Center, RHMSS, 11000 Belgrade, Bulevar Oslobodjenja 8, Serbia
(3) Ministry of Agriculture and Environmental Protection, 11000 Belgrade, Nemanjina 22-26, Serbia
(4) Institute of Meteorology, Faculty of Physics, 11000 Belgrade, Dobracina 16, Serbia
(5) Institute for Sustainable Plant Protection, National Research Council of Italy, I-70126 Bari, Via Zmendola 122/D, Italy

Contact the author

Keywords

climate change, wine-growing regions, Serbia, regional climate model, high resolution, viticulture

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Elicitors application in two maturation stages of Vitis vinifera L. cv Monastrell: changes on the skin cell walls

AIM: In a recent study, it was determined that the mid-ripening period is the most suitable for the application of methyl jasmonate (MeJ), benzothiadiazole BTH and MeJ+BTH on Monastrell grapes, to favor maximum accumulation of phenolic compounds at the time of harvest. However, the increase in the anthocyanin content of

Prototype development for the recovery of wine aromas from fermentation gases

Dealcoholised beverages are trendy. But this market segment is slowed down by flavour losses during dealcoholisation and by the reduced perception of flavours in the absence of alcohol.

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.

Smartphone application use as a tool for water supply management

Uruguay had an average annual rainfall of 1200 mm characterized by a high monthly variability, which generates periods of water deficit and excess. The rational water management

Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

The phenolic profiles of little known red grape cultivars, namely Garnacho, Moribel and Tinto Fragoso, which are autochthonous from the Spanish region of La Mancha (ca. 600,000 ha of vineyards) have been studied over the consecutive seasons of years 2013 and 2014. The study was separately performed over the skins, the pulp and the seeds, and comprised the following phenolic types: anthocyanins, flavonols, hydroxycinnamic acid derivatives (HCADs), total proanthocyanidins (PAs) and their structural features. The selected grape cultivars belong to the Vine Germplasm Bank created in this region in order to preserve the great diversity of genotypes grown in La Mancha.