Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Climate change projections in serbian wine-growing regions

Climate change projections in serbian wine-growing regions

Abstract

Changes in bioclimatic indices in wine-growing region of Serbia are analyzed under the RCP 8.5 IPCC scenario. Results of a global climate model are dynamically downscaled on a horizontal resolution of about 8 km, using a regional model NMMB for a period 1971-2100. Statistical bias correction of regional climate model’s daily outputs of precipitation, minimum and maximum temperature are done for an entire territory of Serbia, using a dataset of daily observation on a regular 8 km grid. Four of bioclimatic indices widely used in viticulture were calculated from the observations in the period 1971-2000 and from the bias corrected model output for two periods in the future, 2011-2040 and 2071-2100.

Results show temperature increase, especially during the vegetation period. By the end of the century precipitation amount during the growing season will significantly drop, alongside with a change of the intramural precipitation distribution towards the Mediterranean climate characteristics. Consequently, climate characteristics of Serbian wine-growing regions will drastically change towards a very warm and moderately dry climate categories.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Mirjam VUJADINOVIC (1,2), Ana VUKOVIC (1,2,) Darko JAKSIC (3), Vladimir DJURDJEVIC (4,2), Mirjana RUML (1), Zorica RANKOVIC-VASIC (1), Zoran PRZIC (1), Branislava SIVCEV (1), Nebojsa MARKOVIC (1), Bojan CVETKOVIC (2), Pierfederico LA NOTTE (5)

(1) Department of Viticulture, Institute of Horticulture, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Nemanjina 6., Serbia
(2) South East European Climate Change Center, RHMSS, 11000 Belgrade, Bulevar Oslobodjenja 8, Serbia
(3) Ministry of Agriculture and Environmental Protection, 11000 Belgrade, Nemanjina 22-26, Serbia
(4) Institute of Meteorology, Faculty of Physics, 11000 Belgrade, Dobracina 16, Serbia
(5) Institute for Sustainable Plant Protection, National Research Council of Italy, I-70126 Bari, Via Zmendola 122/D, Italy

Contact the author

Keywords

climate change, wine-growing regions, Serbia, regional climate model, high resolution, viticulture

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Contaminants in Vitis vinifera L. products: levels and potential risks for human health

Vitis vinifera L. derivatives are susceptible to contamination by biological agents (e.g., bacteria, viruses, fungi), and chemical agents (e.g., heavy metals, persistent organic pollutants).

Influence of trellis system and shoot density in yield and grape composition of a vineyard of Cabernet Sauvignon, in warm climate

In vineyards grown in warm areas, it is usual that the stage of maturity of the grapes is fast and easily reach a high concentration of sugar and low acidity, but not a adequate phenolic maturation. The geometry of the trellis system and the shoot density can modify the microclimate of the cluster and, therefore, the maturation process.

The role of climate/soil of different zones/terroirs on grape characteristics

According to the different concern of the ‘traditional’ and the ‘new’ wine-producing Countries, a variable importance is recognized to the climate/soil and to grapevine cultivars as factors affecting the wine quality. However, the viticultural experience can state that, within each area, climate and soil plays an incontestable role in affecting grape quality, and consequently wine quality, as well as the genetic characteristics of the cultivar.

GrapeBreed4IPM: developing sustainable solutions for viticulture through multi-actor innovation targeting breeding for integrated pest management

According to the World Economic Forum and the European Union’s Biodiversity Strategy for 2030, the loss of biodiversity and the collapse of ecosystems are major threats facing humanity in the future.

The evolution of the aromatic composition of carbonic maceration wines

The vinification by Carbonic maceration (CM) involves the process whereby the whole bunches are subjected to anaerobic conditions during several days. In this anaerobic condition, the grape endogenous enzymes begin an intracellular fermentation. This situation favors that whole grapes split open and release their juice into the tank, increasing the liquid phase that is fermented by yeasts [1]. Then, two types of wines are obtained; one from the free-run liquid in the tank (FCM) and other from the liquid after pressing the whole grape bunches (PCM). PCM wines are recognized as high quality young wines because their fruity and floral aromas[2] that although they are very intense at the end of the winemaking they gradually disappear during conservation.