Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Climate change projections in serbian wine-growing regions

Climate change projections in serbian wine-growing regions

Abstract

Changes in bioclimatic indices in wine-growing region of Serbia are analyzed under the RCP 8.5 IPCC scenario. Results of a global climate model are dynamically downscaled on a horizontal resolution of about 8 km, using a regional model NMMB for a period 1971-2100. Statistical bias correction of regional climate model’s daily outputs of precipitation, minimum and maximum temperature are done for an entire territory of Serbia, using a dataset of daily observation on a regular 8 km grid. Four of bioclimatic indices widely used in viticulture were calculated from the observations in the period 1971-2000 and from the bias corrected model output for two periods in the future, 2011-2040 and 2071-2100.

Results show temperature increase, especially during the vegetation period. By the end of the century precipitation amount during the growing season will significantly drop, alongside with a change of the intramural precipitation distribution towards the Mediterranean climate characteristics. Consequently, climate characteristics of Serbian wine-growing regions will drastically change towards a very warm and moderately dry climate categories.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Mirjam VUJADINOVIC (1,2), Ana VUKOVIC (1,2,) Darko JAKSIC (3), Vladimir DJURDJEVIC (4,2), Mirjana RUML (1), Zorica RANKOVIC-VASIC (1), Zoran PRZIC (1), Branislava SIVCEV (1), Nebojsa MARKOVIC (1), Bojan CVETKOVIC (2), Pierfederico LA NOTTE (5)

(1) Department of Viticulture, Institute of Horticulture, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Nemanjina 6., Serbia
(2) South East European Climate Change Center, RHMSS, 11000 Belgrade, Bulevar Oslobodjenja 8, Serbia
(3) Ministry of Agriculture and Environmental Protection, 11000 Belgrade, Nemanjina 22-26, Serbia
(4) Institute of Meteorology, Faculty of Physics, 11000 Belgrade, Dobracina 16, Serbia
(5) Institute for Sustainable Plant Protection, National Research Council of Italy, I-70126 Bari, Via Zmendola 122/D, Italy

Contact the author

Keywords

climate change, wine-growing regions, Serbia, regional climate model, high resolution, viticulture

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Traçability of main mineral elements on the chain “soil-leaf-must-wine” in relation to “terroir” and vintage in Loire Valley(France)

Dans le cadre de recherches sur la mise en évidence et le déterminisme d’un «effet terroir »un réseau de parcelles du cépage Cabernet Franc greffé sur S04, a été suivi de 1979 à 1990 en Val de Loire (A.O.C. Saumur-Champigny, Chinon et Bourgueil). Des analyses chimiques (N,P, K, Ca, Mg, Fe, Mn, Zn) ont été réalisées sur le sol, les feuilles au stade véraison, les moûts en cours de maturation et à la vendange et enfin sur le vin, pour 18 sites (répartis dans 12unités terroirs de base) et 7 millésimes différents.

Genetic traceability of the varietal origin of wines: a robust application for must and wines during alcoholic fermentation

Industry and regulatory agencies have developed regulations to ensure authenticity and compliance with wine composition limits. However, this can be truncated by the absence of simple and robust analytical methodologies, uninfluenced by the environment, different oenological techniques and cultural practices. Genetic fingerprinting is the most powerful tool for unequivocal varietal identification; it is not affected by the environment or agronomic practices; however, its usefulness in musts and wines has been controversial and there is currently no routine certification of varietal origin based on DNA analysis.

Terroir characterization from cv. Merlot and Sauvignon plots follow-up within the scope of wine-production : “Vins de Pays Charentais” in the Cognac eaux-de-vie vineyard area

Dans les études des terroirs, il est souvent délicat d’établir des zonages et de mesurer les effets de l’environnement sur les vins. Avec plus d’un million d’hectares dans l’aire d’appellation délimitée, le terroir du célèbre vignoble de Cognac est bien connu pour ces eaux-de-vie et ainsi divisé en 6 crus.

First large-scale study of thiol precursor distribution in red grape berry compartments and implications for thiol-type red wine production

Climate change and the growing need to reduce the use of phytosanitary products demand the exploration of disease-resistant grape varieties and/or adapted to drought conditions.

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).