terclim by ICS banner
IVES 9 IVES Conference Series 9 Optimizing disease management in the Rioja wine region: a study on Erisiphe necator and the Gubler-Thomas model

Optimizing disease management in the Rioja wine region: a study on Erisiphe necator and the Gubler-Thomas model

Abstract

Erisiphe necator is endemic in the Rioja Appellation of Origin. Vine growers exert significant effort to protect their crops, given the economic losses this disease causes. Different studies have shown that using Gubler-Thomas Model (GTM) can reduce treatments by up to 20% compared to a full-time protection strategy. This reduction is achieved by optimizing applications based on temperature variations in late spring and summer when the disease’s conidial stage is active. Additionally, since GTM is quite conservative further reductions in sprayings seem feasible.
To evaluate GTM and disease severity, 11 experimental plots with three treatments: a) Unsprayed Control (UC), b) Fully Protected crop – periodic sprayings according to product prescriptions (FP), and c) sprayings following Gubler-Thomas (GT) were established in different areas of La Rioja wine region from 2018 to 2023. Results revealed significant variability in disease severity, with some years experiencing minimal damage in bunches across all treatments, including UC. GTM did not detect these variations in disease severity, indicating a similar risk level between years. Despite this, following GTM advice instead of FP practice lead to a 20% reduction in treatments, with no effect on disease symptoms on the bunches.
This raises questions about the seasonal variation. Are spring conditions causing higher severity during the conidial stage? Is there a specific climatic parameter or measurement distinguishing a severe season from a mild one? Factors like radiation, precipitation, or extreme temperatures in different months might contribute to this variability.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Joaquín Huete1*, Vanessa Tobar1, Beatriz López2, Alicia Pou3

1 Servicio de Producción Agraria. DG. Agricultura y Ganadería. Gobierno de La Rioja
2 Consejería. Educación, Cultura y Turismo. Gobierno de La Rioja
3 Instituto de Ciencias de la Vid y el Vino (ICVV). CSIC

Contact the author*

Keywords

powdery mildew, bioclimatic models, Gubler-Thomas

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Understanding vine response to Mediterranean summer stress for the development of adaptation strategies – in the kaolin case

In this video recording of the IVES science meeting 2023, Sara Bernardo (CITAB, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal) speaks about understanding vine response to Mediterranean summer stress for the development of adaptation strategies – in the kaolin case. This presentation is based on an original article accessible for free on OENO One.

Characterization of tannins and prevention of light-struck taste: the enofotoshield project

Hydrolysable tannins resulted effective against the formation of light-struck taste (LST) in model wine [1]. The first activity of Enofotoshield project is to evaluate the effectiveness of tannins

The vineyard of the future: producing more with less  

similar to other agricultural producers, grape growers face increasing pressure to improve productivity and production efficiency while reducing their environmental impact. Threats due to extreme climate events, as well as the uncertainty of available water and labor, provide significant challenges to the future of grape production. This presentation will provide an integrated overview of the tools and technologies being developed to address these issues and to help growers manage vineyards in the future, including vineyard design, remote and proximal sensing, automation, data management and decision support systems, and germplsm improvement. The potential impact of these advancements on vineyard productivity, fruit quality, and sustainability will be discussed.

Intelligent use of ethanol for the direct quantitative determination of volatile compounds in spirit drinks

The quality of any alcoholic beverage depends on many parameters, such as cultivars, harvesting time, fermentation, distillation technology used, quality and type of wooden barrels (in case of matured drinks), etc.; however, the most important factor in their classification is content of volatile compounds.

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.