terclim by ICS banner
IVES 9 IVES Conference Series 9 A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

Abstract

The sustainability of viticulture hinges on maintaining quality and yield while reducing pesticide use. Promising strides in this direction involve the development of clones with enhanced disease tolerance, particularly through the knockout of plant susceptibility genes. Knocking out of Downy Mildew Resistant 6 (DMR6) led to increased levels of endogenous salicylic acid (SA), a regulator of immunity, resulting in enhanced tolerance to Downy Mildew (DM) and other diseases in various crops.

Mutations in both DMR6-1 and DMR6-2 genes were introduced into two grapevine cultivars using CRISPR-Cas9 using two methods. In the first case, transgene delivery mediated by A. tumefaciens was employed, while in the second case, we developed a ‘single-cell technology’ for gene editing, creating non-transgenic grapevine mutants through the regeneration of protoplasts previously edited with the CRISPR/Cas9 ribonucleoprotein.

We tested the susceptibility of single and double mutants to DM through artificial inoculation assays on detached leaves and whole plants. Our findings indicate that a simultaneous mutation in both DMR6-1 and DMR6-2 is needed to significantly enhance resistance to DM, with the double mutant (dmr6-1-dmr6-2) outperforming either single mutant in both cultivars. Elevated levels of endogenous SA were only observed in the double mutant, while single mutation in DMR6-1 or DMR6-2 proved ineffective. Collectively, our data highlight the need for a double knockout to achieve appreciable results against DM-susceptibility.

Currenlty, we are adapting the ‘single-cell technology’ to generate edited vines from various agronomically relevant cultivars. In parallel, we are assessing the performance of plants edited in different susceptibility genes.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Lisa Giacomelli1*, Tieme Zeilmaker2, Oscar Giovannini1, Umberto Salvagnin3, Domenico Masuero1, Pietro Franceschi1, Urska Vrohvsek1, Simone Scintilla4, Jeroen Rouppe van der Voort2, Claudio Moser1

1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
2 Enza ZadenEnza Zaden Research & Development B.V., Enkhuizen, The Netherlands  
3 C.I.VIT. Consorzio Innovazione Vite, Trento, Italy
4 Hudson River Biotechnology, Wageningen, The Netherlands

Contact the author*

Keywords

DMR6, grapevine, DNA-free, gene editing, downy mildew, susceptibility gene

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Towards a relationship between institutional clonal selection, mass selection and private clonal selection of grapevine cultivars

Each grape cultivar is composed of a population of individuals that are genetically different. Clonal selection has allowed the purification and improvement of the global quality

Exploring the resistance of non-Saccharomyces wine yeasts to dehydration-rehydration processes

AIM: The use of non-Saccharomyces (NS) yeasts in multi-starter fermentations with S. cerevisiae is a trend in the wine industry, but the number of strains commercially available in a powder formulation, such as active dry yeasts (ADY), is still limited.

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

Climate change impacts on grapevine leafroll disease and its transmission by mealybugs

Climate change impacts crop plants, plant pathogens, and their insect vectors and hence adds abiotic stress to the triangle of plant-virus-vector interactions.

Climate change impact study based on grapevine phenology modelling

In this work we present a joint model of calculation the budbreak and full bloom starting dates which considers the heat sums and allows reliable estimations for five white wine grape varieties