terclim by ICS banner
IVES 9 IVES Conference Series 9 A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

Abstract

The sustainability of viticulture hinges on maintaining quality and yield while reducing pesticide use. Promising strides in this direction involve the development of clones with enhanced disease tolerance, particularly through the knockout of plant susceptibility genes. Knocking out of Downy Mildew Resistant 6 (DMR6) led to increased levels of endogenous salicylic acid (SA), a regulator of immunity, resulting in enhanced tolerance to Downy Mildew (DM) and other diseases in various crops.

Mutations in both DMR6-1 and DMR6-2 genes were introduced into two grapevine cultivars using CRISPR-Cas9 using two methods. In the first case, transgene delivery mediated by A. tumefaciens was employed, while in the second case, we developed a ‘single-cell technology’ for gene editing, creating non-transgenic grapevine mutants through the regeneration of protoplasts previously edited with the CRISPR/Cas9 ribonucleoprotein.

We tested the susceptibility of single and double mutants to DM through artificial inoculation assays on detached leaves and whole plants. Our findings indicate that a simultaneous mutation in both DMR6-1 and DMR6-2 is needed to significantly enhance resistance to DM, with the double mutant (dmr6-1-dmr6-2) outperforming either single mutant in both cultivars. Elevated levels of endogenous SA were only observed in the double mutant, while single mutation in DMR6-1 or DMR6-2 proved ineffective. Collectively, our data highlight the need for a double knockout to achieve appreciable results against DM-susceptibility.

Currenlty, we are adapting the ‘single-cell technology’ to generate edited vines from various agronomically relevant cultivars. In parallel, we are assessing the performance of plants edited in different susceptibility genes.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Lisa Giacomelli1*, Tieme Zeilmaker2, Oscar Giovannini1, Umberto Salvagnin3, Domenico Masuero1, Pietro Franceschi1, Urska Vrohvsek1, Simone Scintilla4, Jeroen Rouppe van der Voort2, Claudio Moser1

1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
2 Enza ZadenEnza Zaden Research & Development B.V., Enkhuizen, The Netherlands  
3 C.I.VIT. Consorzio Innovazione Vite, Trento, Italy
4 Hudson River Biotechnology, Wageningen, The Netherlands

Contact the author*

Keywords

DMR6, grapevine, DNA-free, gene editing, downy mildew, susceptibility gene

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: LEVELS AND PATTERNS OBSERVED IN 2020 WINES FROM THE UNITED STATES WEST COAST

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors, described as “smoky”, “bacon”, “campfire” and “ashtray”, often long-lasting and lingering on the palate. In cases of large wildfire events, economic losses for all wine industry actors can be devastating.

Recent advances in our understanding of the impact of climate change on wine grape production

According to the last IPCC report, the scale of recent climate changes are unprecedented over many centuries. Each of the last four decades has been successively warmer than any decade since 1850. Projections for the future foresee that temperature could reach +3.3°C to +5.7°C under the most pessimistic scenario. It is also projected that every region will face more concurrent and multiple changes in climatic impact-drivers. The frequency of extreme climate events is also likely to increase, as well as the occurrence of indirect constraints. These evolving climatic conditions are alrealdy affecting and will continue to affect the suitability of traditional wine grape production areas, but also create opportunities in new locations.

Changes in red wine composition during bottle aging: impacts of viticultural conditions and oxygen availability

Bottle ageing is considered essential for most premium red wine production. An important aim of bottle ageing of wine is to achieve a balance between the oxidative and reductive development. This is typically evaluated by the accumulation of aldehyde compounds (causing oxidative off-flavour) and sulfur-containing compounds (causing reductive off-flavour) in the wine [1]

Multivariate data analysis applied on Fourier Transform Infrared spectroscopy for the prediction of tannins levels during red wine fermentation

Red wine is a beverage with one of the highest polyphenol concentration, which are extracted during the maceration step of the winemaking process.