terclim by ICS banner
IVES 9 IVES Conference Series 9 A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

Abstract

The sustainability of viticulture hinges on maintaining quality and yield while reducing pesticide use. Promising strides in this direction involve the development of clones with enhanced disease tolerance, particularly through the knockout of plant susceptibility genes. Knocking out of Downy Mildew Resistant 6 (DMR6) led to increased levels of endogenous salicylic acid (SA), a regulator of immunity, resulting in enhanced tolerance to Downy Mildew (DM) and other diseases in various crops.

Mutations in both DMR6-1 and DMR6-2 genes were introduced into two grapevine cultivars using CRISPR-Cas9 using two methods. In the first case, transgene delivery mediated by A. tumefaciens was employed, while in the second case, we developed a ‘single-cell technology’ for gene editing, creating non-transgenic grapevine mutants through the regeneration of protoplasts previously edited with the CRISPR/Cas9 ribonucleoprotein.

We tested the susceptibility of single and double mutants to DM through artificial inoculation assays on detached leaves and whole plants. Our findings indicate that a simultaneous mutation in both DMR6-1 and DMR6-2 is needed to significantly enhance resistance to DM, with the double mutant (dmr6-1-dmr6-2) outperforming either single mutant in both cultivars. Elevated levels of endogenous SA were only observed in the double mutant, while single mutation in DMR6-1 or DMR6-2 proved ineffective. Collectively, our data highlight the need for a double knockout to achieve appreciable results against DM-susceptibility.

Currenlty, we are adapting the ‘single-cell technology’ to generate edited vines from various agronomically relevant cultivars. In parallel, we are assessing the performance of plants edited in different susceptibility genes.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Lisa Giacomelli1*, Tieme Zeilmaker2, Oscar Giovannini1, Umberto Salvagnin3, Domenico Masuero1, Pietro Franceschi1, Urska Vrohvsek1, Simone Scintilla4, Jeroen Rouppe van der Voort2, Claudio Moser1

1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
2 Enza ZadenEnza Zaden Research & Development B.V., Enkhuizen, The Netherlands  
3 C.I.VIT. Consorzio Innovazione Vite, Trento, Italy
4 Hudson River Biotechnology, Wageningen, The Netherlands

Contact the author*

Keywords

DMR6, grapevine, DNA-free, gene editing, downy mildew, susceptibility gene

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Aromatic maturity is a cornerstone of terroir expression in red wine

Harvesting grapes at adequate maturity is key to the production of high-quality red wines. Enologists and wine makers define several types of maturity, including technical maturity, phenolic maturity and aromatic maturity. Technical maturity and phenolic maturity are relatively well documented in the scientific literature, while articles on aromatic maturity are scarcer. This is surprising, because aromatic maturity is, without a doubt, the most important of the three in determining wine quality and typicity (including terroir expression). Optimal terroir expression can be obtained when the different types of maturity are reached at the same time, or within a short time frame. This is more likely to occur when the ripening takes place under mild temperatures, neither too cool, nor too hot. Aromatic expression in wine can be driven, from low to high maturity, by green, herbal, fresh fruit, ripe fruit, jammy fruit, candied fruit or cooked fruit aromas. Green and cooked fruit aromas are not desirable in red wines, while the levels of other aromatic compounds contribute to the typicity of the wine in relation to its origin. Wines produced in cool climates, or on cool soils in temperate climates, are likely to express herbal or fresh fruit aromas; while wines produced under warm climates, or on warm soils in temperate climates, may express ripe fruit, jammy fruit or candied fruit aromas. Growers can optimize terroir expression through their choice of grapevine variety. Early ripening varieties perform better in cool climates and late ripening varieties in warm climates. Additionally, maturity can be advanced or delayed by different canopy management practices or training systems.

Barbera d’Asti: the characterization of the vineyard sites

[English version below]

L’objectif de l’étude est de mettre en évidence les différences rencontrées entre les vins Barbera d’Asti, qui sont produits en AOC. Celles-ci sont imputées aux terroirs caractérisés selon les facteurs pédologiques, climatiques, et qui conduisent à des différents potentiels viticoles et œnologiques. Il est proposé une individualisation des sous-zones.

Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Increasing water scarcity and unpredictable rainfall patterns necessitate efficient water management in grape production. This study proposes a novel approach for monitoring grapevine water status in a commercial vertically-shoot-positioned Vitis vinifera L. Tempranillo vineyard using non-invasive spectroscopy with a battery of different AI methods to assess vineyard water status, that could drive precise irrigation. A contactless, miniature NIR spectrometer (900-1900 nm) mounted on a moving vehicle (3 Km/h) was employed to collect spectral data from the vines’ northeast side along six dates in season 2021.

Valuation of the fields viti-vinicoles by the landscapes

La prise en compte des paysages viticoles dans le développement durable ou l’aménagement du territoire est un thème non négligeable pour la valorisation de la filière viti-vinicole à l’échelle d’une exploitation ou d’une A.O.C.

Cluster trait prediction using hyperspectral signatures in a population of 221 Riesling clones

Cluster architecture in grapevine plays a critical role in influencing bunch microclimate, thus quality traits, including sugar content, phenolic composition, and disease susceptibility.