terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact of mycorrhizal inoculation of ‘Monastrell’ grapevines grafted onto different conventional vs. newly breed rootstocks 

Impact of mycorrhizal inoculation of ‘Monastrell’ grapevines grafted onto different conventional vs. newly breed rootstocks 

Abstract

Grafting Vitis vinifera L. (wine traditional cultivars) onto North American grapevine species or hybrids is a common practice in viticulture given their tolerance against phylloxera (Daktulosphaira vitifoliae). However, rootstock genetic background affects the response of grapevines to environmental stresses and their ability for establishing a symbiotic relationship with the microbial communities, and more specifically with arbuscular mycorrhizal fungi (AMF).

The aim of this study was to evaluate Monastrell variety (clone ENTAV 369) grafted onto three rootstocks (140Ru, 110R and RG8) characterized by a different genetic background, in combination with AMF inoculation (Rhizophagus irregularis) vs. a non-inoculated control with regards to vegetative growth, leaf gas exchange parameters, and mycorrhization. Potted vines were grown in open-top greenhouses and irrigated by counteracting evapotranspiration. The vines were monitored over the season. Plants were homogenized by measuring the trunk section, and at the end of the season, vegetative growth evidenced differences between rootstocks on the scion annual growth. Neither water potential nor gas exchange parameters were significantly affected by the treatments; however, a trend towards increased carbon assimilation rate was observed in inoculated vines. Assayed rootstocks showed different pattern for mycorrhization, with 140Ru being the rootstock that achieved higher values, but no effect was observed on glomalin secretion. To sum up, results showed that the effect of mycorrhizal inoculation on vine growth and gas exchange parameters was modulated by the rootstock genotype.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Maider Velaz,1,2*, Ignacio Buesa3, Josefa María Navarro4, L. Gonzaga Santesteban1,2, José Escalona5, Pascual Romero4, Maite Loidi1, Ana Villa-Llop1, Pablo Botia4, Nazareth Torres1,2

1 Dept. of Agronomy, Biotechnology and Food Science, Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Navarra, Spain
2 Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Public University of Navarre, Campus Arrosadia 31006 Pamplona, Spain
3 Desertification Research Center (CIDE-CSIC-UV-GV), CV-315, Km. 10, 7, 46113 Moncada, Valencia, Spain
4 Group of Irrigation and Stress Physiology, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), Murcia 30150, Spain
5 Agro-Environmental and Water Economics Institute (INAGEA), University of Balearic Islands (UIB)

Contact the author*

Keywords

Arbuscular mycorrhizal fungi (AMF), gas exchange parameters, glomalin, vegetative growth, Vitis genotypes

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Relationship between chemical parameters of tannins and in-mouth attributes of grape phenolic fractions

Establish relationships between taste and mouthfeel properties of grapes and tannin-related chemical parameters. Tempranillo Tinto and Garnacha Tinta grapes were harvested from distinct blocks in different dates; each sample collection date was separated by one week. Grapes were destemmed and macerated in 15% of ethanol for one week. The polyphenolic fraction (PF) of samples was submitted to solid phase extraction on C18 cartridges and recovered with ethanol. PFs were reconstituted in wine model and their taste and mouthfeel properties were characterised by rate-K-attributes methodology. In parallel, concentration (TC) and activity (TAc) of tannins as well as the concentration of tannins linked to anthocyanins (T-A) were determined using HPLC-UV–VIS.

Elucidating the biological function of EPFL9 in grapevine roots

Epidermal Patterning Factors are a class of cysteine rich peptides known to be involved in many developmental processes. The role of EPF1, EPF2 and EPFL9 in controlling leaf stomata formation has been well described in model plants and cereals, and recently also in grapevine, while little is known about their activity in other organs. The aim of our study is to investigate whether VviEPFL9-2 can have a specific biological function in grapevine roots, where it resulted to be expressed. As grapevine is cultivated in the form of a grafted plant, we focused our study on the commonly used rootstock Kober 5BB (Vitis berlandieri x Vitis riparia). VviEPFL9-2 was edited in Kober 5BB plants using Agrobacterium tumefaciens transformation of embryogenic calli and the CRISPR/Cas9 technology. The phenotypic evaluation in greenhouse indicated that, as expected, the leaves of knock-out (KO) plants have a significant lower stomatal density compared to WT, associated with a lower stomatal conductance.

Do we have convergence or divergence in firms’ production and business practices in the global wine industry? 

Wine production is a globally significant and intricate industry, characterized by diverse regions, grape varieties, and producers. Competitive advantage in wine production and marketing arises from localized natural attributes known as terroir, combined with transferable expertise in agronomic practices, winemaking methods, packaging, distribution, and marketing. Wine is a very globalized product with 40% of the total output exported. Globalization has prompted discussions on convergence of business and production practices across industries, driven by technological progress and adoption of international standards. However, persisting differences in cultural norms, institutional frameworks, and regulatory environments hinder full convergence.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

Red Grenache variety in Rhône Valley : impact of “terroir” and vintages on the aromatic potential of the grapes

The Grenache Noir grape variety, due to its originality and its representativeness, contributes very directly to the quality and typicality of the wines of the Rhône Valley. It is generally appreciated for its varied aromatic palette and for the roundness and suppleness it gives to wines. Since 1995, the Rhodanien Institute has set up a network of reference plots representative of the different types of terroir present in the southern zone of the Côtes du Rhône Appellation (TRUC, 1997; VAUDOUR et al, 1996 ) . Publications on the aromatic composition of grapes and wines are very abundant, but only a few articles have appeared on the Grenache grape variety PAUMES et al., 1986).