terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact of mycorrhizal inoculation of ‘Monastrell’ grapevines grafted onto different conventional vs. newly breed rootstocks 

Impact of mycorrhizal inoculation of ‘Monastrell’ grapevines grafted onto different conventional vs. newly breed rootstocks 

Abstract

Grafting Vitis vinifera L. (wine traditional cultivars) onto North American grapevine species or hybrids is a common practice in viticulture given their tolerance against phylloxera (Daktulosphaira vitifoliae). However, rootstock genetic background affects the response of grapevines to environmental stresses and their ability for establishing a symbiotic relationship with the microbial communities, and more specifically with arbuscular mycorrhizal fungi (AMF).

The aim of this study was to evaluate Monastrell variety (clone ENTAV 369) grafted onto three rootstocks (140Ru, 110R and RG8) characterized by a different genetic background, in combination with AMF inoculation (Rhizophagus irregularis) vs. a non-inoculated control with regards to vegetative growth, leaf gas exchange parameters, and mycorrhization. Potted vines were grown in open-top greenhouses and irrigated by counteracting evapotranspiration. The vines were monitored over the season. Plants were homogenized by measuring the trunk section, and at the end of the season, vegetative growth evidenced differences between rootstocks on the scion annual growth. Neither water potential nor gas exchange parameters were significantly affected by the treatments; however, a trend towards increased carbon assimilation rate was observed in inoculated vines. Assayed rootstocks showed different pattern for mycorrhization, with 140Ru being the rootstock that achieved higher values, but no effect was observed on glomalin secretion. To sum up, results showed that the effect of mycorrhizal inoculation on vine growth and gas exchange parameters was modulated by the rootstock genotype.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Maider Velaz,1,2*, Ignacio Buesa3, Josefa María Navarro4, L. Gonzaga Santesteban1,2, José Escalona5, Pascual Romero4, Maite Loidi1, Ana Villa-Llop1, Pablo Botia4, Nazareth Torres1,2

1 Dept. of Agronomy, Biotechnology and Food Science, Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Navarra, Spain
2 Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Public University of Navarre, Campus Arrosadia 31006 Pamplona, Spain
3 Desertification Research Center (CIDE-CSIC-UV-GV), CV-315, Km. 10, 7, 46113 Moncada, Valencia, Spain
4 Group of Irrigation and Stress Physiology, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), Murcia 30150, Spain
5 Agro-Environmental and Water Economics Institute (INAGEA), University of Balearic Islands (UIB)

Contact the author*

Keywords

Arbuscular mycorrhizal fungi (AMF), gas exchange parameters, glomalin, vegetative growth, Vitis genotypes

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

Visualization of wine origin, quality level and terroir by the landscape

The communication of the aims of a viticulture under the premise of terroir is presently discussed in a lot of wine-growing regions around the world. To encourage this discussion the differences in knowledge, understanding, and preference concerning wine and landscape should be regarded more closely: the wine should be perceived as a representative of its region and one of the most characteristic features of a region is the landscape.

Protected Designation of Origin (D.P.O.) Valdepeñas: classification and map of soils

The objective of the work described here is the elaboration of a map of the different types of vineyard soils that to guide the famers in the choice of the most productive vine rootstocks and varieties. 90 vineyard soils profiles were analysed in the entire territory of the Origen Denominations of Valdepeñas. The sampling was carried out in 2018 (June to October) by making a sampling grid, followed by photointerpretation and control in the field. The studied soils can be grouped into 9 different soil types (according to FAO 2006 classification): Leptosols, Regosols, Fluvisols, Gleysols, Cambisols, Calcisols, Luvisols and Anthrosols. A map showing the soil distribution with different type of soils has been made with the ArcGIS program. Regarding to the choice of rootstock, Calcisoles are soils with a high active limestone content, so the rootstocks used in these soils must be resistant to this parameter; Luvisols are deep soils with high clay content, so they will support vigorous rootstocks. Because the cartographic units are composed of two or more subgroups, with are associated in variable proportions, 9 different soil associations have been established; Unit 1: Leptosols, Cambisols and Luvisols (80%, 15% and 5% respectively); Unit 2: Cambisols with Regosols and Luvisols (40%, 30% and 30% respectively); Unit 3: Cambisols and Gleysols with Regosols (40%, 40% and 20% respectively); Unit 4: Regosols with Cambisols, Leptosols and Calcisols (40%, 30%, 15% and 15% respectively); Unit 5: Cambisols, Leptosols, Calcisols and Regosols (25% each of them); Unit 6: Luvisols with Cambisol and Calcisols (80%, 10% and 10% respectively); Unit 7: Luvisols and Calcisols with Cambisols (40%, 40% and 20% respectively); Unit 8: Calcisols with, Cambisols and Luvisols (80%, 10% and 10% respectively); Unit 9: Anthrosols. These study allow to elaborate the first map of vineyard soils of this Protected Designation of Origin in Castilla-La Mancha.

Effect of vine nitrogen status on grape and wine quality: Terroir study in the Vaud vineyard (Switzerland)

This study was conducted on soil-climate-plant relations (terroir) and their impact on grape composition and wine quality in the canton of Vaud by Agroscope Changins-Wädenswil ACW

Unravelling regional typicality of Australian premium Shiraz through an untargeted metabolomics approach

Aims: The current study seeks to demonstrate that premium Shiraz wines from different Australian geographic indications (GI) can be distinguished by their volatile compound composition.