terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact of mycorrhizal inoculation of ‘Monastrell’ grapevines grafted onto different conventional vs. newly breed rootstocks 

Impact of mycorrhizal inoculation of ‘Monastrell’ grapevines grafted onto different conventional vs. newly breed rootstocks 

Abstract

Grafting Vitis vinifera L. (wine traditional cultivars) onto North American grapevine species or hybrids is a common practice in viticulture given their tolerance against phylloxera (Daktulosphaira vitifoliae). However, rootstock genetic background affects the response of grapevines to environmental stresses and their ability for establishing a symbiotic relationship with the microbial communities, and more specifically with arbuscular mycorrhizal fungi (AMF).

The aim of this study was to evaluate Monastrell variety (clone ENTAV 369) grafted onto three rootstocks (140Ru, 110R and RG8) characterized by a different genetic background, in combination with AMF inoculation (Rhizophagus irregularis) vs. a non-inoculated control with regards to vegetative growth, leaf gas exchange parameters, and mycorrhization. Potted vines were grown in open-top greenhouses and irrigated by counteracting evapotranspiration. The vines were monitored over the season. Plants were homogenized by measuring the trunk section, and at the end of the season, vegetative growth evidenced differences between rootstocks on the scion annual growth. Neither water potential nor gas exchange parameters were significantly affected by the treatments; however, a trend towards increased carbon assimilation rate was observed in inoculated vines. Assayed rootstocks showed different pattern for mycorrhization, with 140Ru being the rootstock that achieved higher values, but no effect was observed on glomalin secretion. To sum up, results showed that the effect of mycorrhizal inoculation on vine growth and gas exchange parameters was modulated by the rootstock genotype.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Maider Velaz,1,2*, Ignacio Buesa3, Josefa María Navarro4, L. Gonzaga Santesteban1,2, José Escalona5, Pascual Romero4, Maite Loidi1, Ana Villa-Llop1, Pablo Botia4, Nazareth Torres1,2

1 Dept. of Agronomy, Biotechnology and Food Science, Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Navarra, Spain
2 Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Public University of Navarre, Campus Arrosadia 31006 Pamplona, Spain
3 Desertification Research Center (CIDE-CSIC-UV-GV), CV-315, Km. 10, 7, 46113 Moncada, Valencia, Spain
4 Group of Irrigation and Stress Physiology, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), Murcia 30150, Spain
5 Agro-Environmental and Water Economics Institute (INAGEA), University of Balearic Islands (UIB)

Contact the author*

Keywords

Arbuscular mycorrhizal fungi (AMF), gas exchange parameters, glomalin, vegetative growth, Vitis genotypes

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The wine microbial ecosystem: Molecular interactions between yeast species and evidence for higher order interactions

Fermenting grape juice represents one of the oldest continuously maintained anthropogenic microbial environments and supports a well-mapped microbial ecosystem. Several yeast and bacterial species dominate this ecosystem, and some of these species are part of the globally most studied and best understood individual organisms. Detailed physiological, cellular and molecular data have been generated on these individual species and have helped elucidate complex evolutionary processes such as the domestication of wine yeast strains of the species Saccharomyces cerevisiae. These data support the notion that the wine making environment represents an ecological niche of significant evolutionary relevance. Taken together, the data suggest that the wine fermentation ecosystem is an excellent model to study fundamental questions about the working of microbial ecosystems and on the impact of biotic selection pressures on microbial ecosystem functioning. Indeed, and although well mapped, the rules and molecular mechanisms that govern the interactions between microbial species within this, and other, ecosystems remain underexplored. Here we present data derived from several converging approaches, including microbiome data of spontaneous fermentations, the population dynamics of constructed consortia, the application of biotic selection pressures in directed laboratory evolution, and the physiological and molecular analysis of pairwise and higher order interactions between yeast species. The data reveal the importance of cell wall-related elements in interspecies interactions and in evolutionary adaptation and suggest that predictive modelling and biotechnological control of the wine ecosystem during fermentation are promising strategies for wine making in future.

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

The pyramidal organization of AOC in France: a process of identification and valorisation of terroirs

English version: Result of their history, some famous French wine countries such as Burgundy, Bordeaux or Alsace, have a hierarchical organization of their Appellations of Controlled Origin (AOC): AOC regional, communal, Premier Cru, Grand Cru.

Modeling from functioning of a grape berry to the whole plant

Grape quality is a complex trait that mainly refers to berry chemical composition, including sugars, organic acids, phenolics, aroma and aroma precursor compounds.

An overview of wine sensory characterization: from classical descriptive analysis to the emergence of novel profiling techniques

The wine industry requires coexistence between tradition and innovation to meet consumers’ preferences. Sensory science allows the objective quantification of consumers’ understanding of a product and subjective feedback of consumer’s perception through acceptance or rejection of stimulus or even describing emotions evoked [1]. To measure sensations, emotions and liking, and their dynamics over time, time-intensity methods are crucial tools with growing interest in sensory science [2].