terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact of mycorrhizal inoculation of ‘Monastrell’ grapevines grafted onto different conventional vs. newly breed rootstocks 

Impact of mycorrhizal inoculation of ‘Monastrell’ grapevines grafted onto different conventional vs. newly breed rootstocks 

Abstract

Grafting Vitis vinifera L. (wine traditional cultivars) onto North American grapevine species or hybrids is a common practice in viticulture given their tolerance against phylloxera (Daktulosphaira vitifoliae). However, rootstock genetic background affects the response of grapevines to environmental stresses and their ability for establishing a symbiotic relationship with the microbial communities, and more specifically with arbuscular mycorrhizal fungi (AMF).

The aim of this study was to evaluate Monastrell variety (clone ENTAV 369) grafted onto three rootstocks (140Ru, 110R and RG8) characterized by a different genetic background, in combination with AMF inoculation (Rhizophagus irregularis) vs. a non-inoculated control with regards to vegetative growth, leaf gas exchange parameters, and mycorrhization. Potted vines were grown in open-top greenhouses and irrigated by counteracting evapotranspiration. The vines were monitored over the season. Plants were homogenized by measuring the trunk section, and at the end of the season, vegetative growth evidenced differences between rootstocks on the scion annual growth. Neither water potential nor gas exchange parameters were significantly affected by the treatments; however, a trend towards increased carbon assimilation rate was observed in inoculated vines. Assayed rootstocks showed different pattern for mycorrhization, with 140Ru being the rootstock that achieved higher values, but no effect was observed on glomalin secretion. To sum up, results showed that the effect of mycorrhizal inoculation on vine growth and gas exchange parameters was modulated by the rootstock genotype.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Maider Velaz,1,2*, Ignacio Buesa3, Josefa María Navarro4, L. Gonzaga Santesteban1,2, José Escalona5, Pascual Romero4, Maite Loidi1, Ana Villa-Llop1, Pablo Botia4, Nazareth Torres1,2

1 Dept. of Agronomy, Biotechnology and Food Science, Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Navarra, Spain
2 Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Public University of Navarre, Campus Arrosadia 31006 Pamplona, Spain
3 Desertification Research Center (CIDE-CSIC-UV-GV), CV-315, Km. 10, 7, 46113 Moncada, Valencia, Spain
4 Group of Irrigation and Stress Physiology, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), Murcia 30150, Spain
5 Agro-Environmental and Water Economics Institute (INAGEA), University of Balearic Islands (UIB)

Contact the author*

Keywords

Arbuscular mycorrhizal fungi (AMF), gas exchange parameters, glomalin, vegetative growth, Vitis genotypes

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Georgian vitis germplasm: conservation, research and usage

Grapevine Vitis vinifera L. is a leader perennial crops for the Republic of Georgia, the South Caucasus. This is a region where the first wine making practice was initiated 8.000 years ago (McGovern et al. 2017) and a spot of grape domestication. The country of Georgia holds 525 local and more than 60 breeding varieties – they are preserved in 9 field collections inside the country.The list of recommended wine cultivars contains 34 names, including 27 old autochthonous varieties and covering 94% of the country’s vineyards.

Chemical and sensory diversity of regional Cabernet-Sauvignon wines

AIM: To investigate chemical and sensory drivers of regional typicity of Cabernet Sauvignon from different geographical regions of Australia.

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.

Recovery and purification of proteins from grape seed byproducts using proteomic and separative techniques

Grape seeds account for around 5% of the weight of the whole grape berry, representing approximately 40%-50% of the solid by-products that the different wine industries generate during the winemaking process.

Adjustments of water use efficiency by stomatal regulation during drought and recovery of Verona province grape varieties grafted on two different vitis hybrid rootstocks

Drought is considered to be the predominant factor both for determining the geographic distribution of vegetation and for restricting crop yields in agriculture. Furthermore