terclim by ICS banner
IVES 9 IVES Conference Series 9 Functional characterization of grapevine MLO genes to define their roles in Powdery mildew susceptibility by CRISPR/Cas9 genome editing

Functional characterization of grapevine MLO genes to define their roles in Powdery mildew susceptibility by CRISPR/Cas9 genome editing

Abstract

Successful powdery mildew (PM) infection in plants relies on Mildew Resistance Locus O (MLO) genes, which encode susceptibility factors essential for fungal penetration. In Arabidopsis, loss-of-function mutations in three clade-V MLOs, AtMLO2, 6, and 12 confer complete resistance to PM infection. Since then, efforts are on to discover MLO genes contributing to PM susceptibility in many species to introduce mlo-based PM-resistance. Earlier studies in tomato and grapevine, using the RNAi approach, attributed PM susceptibility to SlMLO1, 5, and 8 and VvMLO3, 13, and 17, respectively indicating likely functional redundancy among MLOs. Here, we disrupted the closest grapevine orthologues, VvMLO3, 4, 13, and 17 through CRISPR/Cas9-mediated mutagenesis in the microvine model with the goal of identifying the candidate MLO genes to introduce mlo-based PM resistance. Individual mutants mlo3, mlo4, mlo13 and mlo17 showed 8 to 50% less infection to E. necator, whereas double mutants, mlo3/4, mlo3/13 andmlo13/17 and triple mutant mlo3/13/17 showed 60 to 90% less infection. But the quadruple mlo3/4/13/17 mutant plants showed near complete PM resistance. Considerable differences were observed in the resistance level of clones among the triple and quadruple mutants due to the differences in editing efficiency of individual guide RNAs. Some mutants showed pleiotropic effects in the growth and development, ranging from early senescence and stunted growth to non-flowering phenotypes, which also seemed to depend on the percentage of gene-edited cells in the plant. The overarching goal is to excise the genome-integrated T-DNA cassette from the mutants using CRISPR Ribonucleoproteins for transgene-free PM resistance.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Satyanarayana Gouthu1*, Laurent Deluc2,3, Samuel Talbot1

1,2 Department of Horticulture, Oregon State University, Corvallis, OR, USA
3 Oregon Wine Research Institute, Oregon State University, Corvallis, OR, USA

Contact the author*

Keywords

Powdery mildew, Grapevine MLO, mildew-resistance, Gene Editing

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Epigenetic Modulation Of Inflammation And Synaptic Plasticity By Polyphenolic Metabolites Promotes Resilience Against Stress In Mice

Introduction: Major depressive disorder is associated with abnormalities in the brain and the immune system. Chronic stress in animals showed that epigenetic and inflammatory mechanisms play important roles in mediating resilience and susceptibility to depression.

Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

The qualitative and quantitative distribution of the phenolic compounds in red wines depends on cultivars features, on grapes maturation state, on grapes processing technology including must obtention, as well as on maceration-fermentation method (Margheri, 1981). The last two factors are responsible for the different phenolic composition of the wines produced from the same cultivar.

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.

Grapevine nitrogen status: correlation between chlorophyll indices n-tester and spadGrapevine nitrogen status

Knowledge of the nitrogen nutrition status of grapevines is essential for the sustainable management of their nutrition for the production of quality grapes. The measurement of the chlorophyll index is a rapid, non-destructive and relatively inexpensive method that provides a good approximation of the nitrogen nutrition status of the vine during the season. Interpretation thresholds are currently insufficient or non-existent for some chlorophyll meters. Ideally, they should be available for each variety and each phenological stage. In order to popularize the use of chlorophyll-meters, measurements were carried out at Agroscope in Switzerland to establish the correlation between the indices obtained by the devices N-tester and SPAD 502.

Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

The use of non-Saccharomyces yeast species for the improvement of wine technological and oenological properties is a topic that has gained much interest in recent years [1]. Their application as co-starter cultures sequential to the inoculation of Saccharomyces cerevisiae and in aging on the lees has been shown to improve aspects such as protein stability and mouthfeel [2].