terclim by ICS banner
IVES 9 IVES Conference Series 9 Functional characterization of grapevine MLO genes to define their roles in Powdery mildew susceptibility by CRISPR/Cas9 genome editing

Functional characterization of grapevine MLO genes to define their roles in Powdery mildew susceptibility by CRISPR/Cas9 genome editing

Abstract

Successful powdery mildew (PM) infection in plants relies on Mildew Resistance Locus O (MLO) genes, which encode susceptibility factors essential for fungal penetration. In Arabidopsis, loss-of-function mutations in three clade-V MLOs, AtMLO2, 6, and 12 confer complete resistance to PM infection. Since then, efforts are on to discover MLO genes contributing to PM susceptibility in many species to introduce mlo-based PM-resistance. Earlier studies in tomato and grapevine, using the RNAi approach, attributed PM susceptibility to SlMLO1, 5, and 8 and VvMLO3, 13, and 17, respectively indicating likely functional redundancy among MLOs. Here, we disrupted the closest grapevine orthologues, VvMLO3, 4, 13, and 17 through CRISPR/Cas9-mediated mutagenesis in the microvine model with the goal of identifying the candidate MLO genes to introduce mlo-based PM resistance. Individual mutants mlo3, mlo4, mlo13 and mlo17 showed 8 to 50% less infection to E. necator, whereas double mutants, mlo3/4, mlo3/13 andmlo13/17 and triple mutant mlo3/13/17 showed 60 to 90% less infection. But the quadruple mlo3/4/13/17 mutant plants showed near complete PM resistance. Considerable differences were observed in the resistance level of clones among the triple and quadruple mutants due to the differences in editing efficiency of individual guide RNAs. Some mutants showed pleiotropic effects in the growth and development, ranging from early senescence and stunted growth to non-flowering phenotypes, which also seemed to depend on the percentage of gene-edited cells in the plant. The overarching goal is to excise the genome-integrated T-DNA cassette from the mutants using CRISPR Ribonucleoproteins for transgene-free PM resistance.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Satyanarayana Gouthu1*, Laurent Deluc2,3, Samuel Talbot1

1,2 Department of Horticulture, Oregon State University, Corvallis, OR, USA
3 Oregon Wine Research Institute, Oregon State University, Corvallis, OR, USA

Contact the author*

Keywords

Powdery mildew, Grapevine MLO, mildew-resistance, Gene Editing

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Sustainability as system innovation: sustainability as system innovation: a returnable system for glass wine bottles

Introduction increasing sustainability is essential and a societal challenge, requiring fundamental changes in behaviour and attitudes. This applies to both producers and consumers. For the wine industry in particular, such a change is a major challenge. An eip-agri research project is evaluating the introduction of a returnable glass system in the german wine industry as a key solution for increasing sustainability. Given the need for change associated with a returnable system, the project is theoretically grounded in systems innovation, as this approach provides solutions for complex, transformative change.

Methyl jasmonate versus nano methyl jasmonate: effects on anthocyanins mature evolution in monastrell grapes

The climate change is afecting particulary to the South of Spain, with high temperatures. It is important to develop new strategies in order to mantain the quality of wines

A GIS Analysis of New Zealand Terroir

This paper summarises a national survey of the geological setting of vineyards in New Zealand. We also provide an overview of climate, slope, aspect and varietals planted in New Zealand vineyards as a whole and for some individual regions.

Historical reconquest of hillslopes by the “Vins des Abymes” after the collapse of Mont Granier in 1248 (Savoie, France)

The vineyards extending between the hillslopes of ‘Apremont’ and ‘Les Marches’ that dominate the valley of Chambéry (Savoie, French Alps) define the terroir of the ‘Vins des Abymes’.

A first look at the aromatic profile of “Monferace” wines

Grignolino, is a native Piedmont grape variety which well represents the historical and
enological identity of Monferrato, a territory between Asti and Casale Monferrato, included in the World Heritage List designated by UNESCO (1).