terclim by ICS banner
IVES 9 IVES Conference Series 9 Functional characterization of grapevine MLO genes to define their roles in Powdery mildew susceptibility by CRISPR/Cas9 genome editing

Functional characterization of grapevine MLO genes to define their roles in Powdery mildew susceptibility by CRISPR/Cas9 genome editing

Abstract

Successful powdery mildew (PM) infection in plants relies on Mildew Resistance Locus O (MLO) genes, which encode susceptibility factors essential for fungal penetration. In Arabidopsis, loss-of-function mutations in three clade-V MLOs, AtMLO2, 6, and 12 confer complete resistance to PM infection. Since then, efforts are on to discover MLO genes contributing to PM susceptibility in many species to introduce mlo-based PM-resistance. Earlier studies in tomato and grapevine, using the RNAi approach, attributed PM susceptibility to SlMLO1, 5, and 8 and VvMLO3, 13, and 17, respectively indicating likely functional redundancy among MLOs. Here, we disrupted the closest grapevine orthologues, VvMLO3, 4, 13, and 17 through CRISPR/Cas9-mediated mutagenesis in the microvine model with the goal of identifying the candidate MLO genes to introduce mlo-based PM resistance. Individual mutants mlo3, mlo4, mlo13 and mlo17 showed 8 to 50% less infection to E. necator, whereas double mutants, mlo3/4, mlo3/13 andmlo13/17 and triple mutant mlo3/13/17 showed 60 to 90% less infection. But the quadruple mlo3/4/13/17 mutant plants showed near complete PM resistance. Considerable differences were observed in the resistance level of clones among the triple and quadruple mutants due to the differences in editing efficiency of individual guide RNAs. Some mutants showed pleiotropic effects in the growth and development, ranging from early senescence and stunted growth to non-flowering phenotypes, which also seemed to depend on the percentage of gene-edited cells in the plant. The overarching goal is to excise the genome-integrated T-DNA cassette from the mutants using CRISPR Ribonucleoproteins for transgene-free PM resistance.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Satyanarayana Gouthu1*, Laurent Deluc2,3, Samuel Talbot1

1,2 Department of Horticulture, Oregon State University, Corvallis, OR, USA
3 Oregon Wine Research Institute, Oregon State University, Corvallis, OR, USA

Contact the author*

Keywords

Powdery mildew, Grapevine MLO, mildew-resistance, Gene Editing

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Il Cabernet di Atina dal 1850 al giorni nostri: un esempio di valorizzazione del territorio

In the province of Frosinone from 1850 they are cultivated in some zones wine grape of French origin like Merlot, Cabernet franc Cabernet sauvignon, Sirah, Pinot noir. The insertion of these varieties was the work of Pasquale Visocchi in the great company of family “Fratelli Visocchi Proprietari” (F. V.P.).

Wine labelling with the list of ingredients: context, consumer’s perception and future challenges

In this video recording of the IVES science meeting 2024, Stéphane La Guerche (Œnoppia, Paris, France) speaks about wine labelling with the list of ingredients: context, consumer’s perception and future challenges. This presentation is based on an original article accessible for free on IVES Technical Reviews.

The influence of vine row position in terraced Merlot vineyards on water deficit and polyphenols – case study in the Vipava Valley, Slovenia

A study was conducted in the Vipava Valley (Slovenia) to understand the effects of positioning rows of Merlot (Vitis vinifera L.) vines on terraces on plant available water, yield, and grape composition

Grape variety identification and detection of terroir effects from satellite images

Satellite images are used to determine the reflectance dependency to wavelength in different grape varieties (Cabernet-Sauvignon, Merlot, Pinot Noir, and Chardonnay). The terroir influence is investigated through study of vineyards in France, Brazil and Chile.

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].